
Zelig Developers’ Manual v1.0

January 27, 2012

2

Contents

1 Quick Start Guide 5
1.1 Introduction . 5
1.2 Overview . 5
1.3 zelig.skeleton: Automating Zelig Model Creation 6

1.3.1 A Demonstrative Example 6
1.3.2 Explanation of the zelig.skeleton Example 6
1.3.3 Conclusion . 6

1.4 zelig2 : Interacting with Existing Statistical Models in Zelig . . . 7
1.4.1 A Simple Example . 7
1.4.2 A More Detailed Example 8
1.4.3 An Even-More Detailed Example 8
1.4.4 Summary and More Information aboput zelig2 Methods 10

1.5 param: Simulating Parameters 10
1.5.1 The Function Signature 11
1.5.2 The Function Return Value 11
1.5.3 Summary and More Information param Methods 13

1.6 qi: Simulating Quantities of Interest 13
1.6.1 The qi Function Signature 13
1.6.2 The qi Function Return Values 13
1.6.3 Coding Conventions for the qi Function 13
1.6.4 A Simplified Example . 15
1.6.5 Summary and More Information about qi Methods . . . 16

1.7 Conclusion . 16

2 describe 17
2.1 Introduction . 17
2.2 describe Method Signature . 17
2.3 describe Method Return Value 17
2.4 describe Notable Features . 18
2.5 Example of a describe Function 18

2.5.1 describe.logit.R . 18
2.5.2 Explanation of describe.logit.R 19
2.5.3 Results of describe.logit.R 19

2.6 Summary and Conclusion of the describe Method 19

3

4 CONTENTS

3 zelig2 21
3.1 Introduction . 21
3.2 zelig2 Method Signature . 22
3.3 zelig2 Return Value . 22
3.4 Notable Features of the zelig2 Method 23
3.5 Details in Coding the zelig2 Method 23
3.6 Example of a zelig2 Method . 23

3.6.1 zelig2logit.R . 24
3.6.2 Explanation of zelig2logit.R 24

4 param 25
4.1 Introduction . 25
4.2 param Method Signature . 25
4.3 param Return Value . 25
4.4 Notable Features of the param Method 26
4.5 Details in Coding the param Method 26
4.6 Example of setting the fam attribute 26

4.6.1 param.logit.R . 26
4.6.2 Explanation of param.logit.R 27

4.7 Example of setting the link and linkinv attributes 28
4.7.1 param.poisson.R . 28
4.7.2 Explanation of param.poisson.R 28

5 qi 29
5.1 Introduction . 29
5.2 qi Method Signature . 29
5.3 qi Method Return Value . 30
5.4 Notable Features of qi Function 30
5.5 Details in Coding the qi Method 31
5.6 Simple Example qi function (qi.logit.R) 31

6 Zelig Style Guide 33
6.1 Mandatory Naming Conventions 33

6.1.1 Function and Method Naming 33
6.1.2 Generic Function Naming 33
6.1.3 Class Naming . 34
6.1.4 Variables . 34
6.1.5 Private Functions and Variables 34
6.1.6 Operator Overloading . 35

6.2 Suggested Conventions . 35
6.2.1 S3 Object Orientation . 35
6.2.2 Package Naming . 35

6.3 Synopsis . 35

Chapter 1

Quick Start Guide to
Making a Zelig Model

1.1 Introduction

Programming a Zelig module is a simple procedure. By following several steps,
any statistical model can be implemented in the Zelig software suite. The fol-
lowing document places emphasis on speed and practicality, rather than the
numerous, technical details involved in developing statistical models. That is,
this guide will explain how to quickly and most simply include existing statistical
software in the Zelig suite.

1.2 Overview

In order for a Zelig model to function correctly, four components need to exist:

a statistical model : This can be any statistical model of the developer’s choos-
ing, though it is suggested that it be written in R. Examples of statistical
models already implemented in Zelig include: Brian Ripley’s glm and Ko-
suke Imai’s MNP models.

zelig2model This method acts as a bridge between the external statistical
model and the Zelig software suite

param.model This method specifies the simulated parameters used to compute
quantities of interest

qi.model This method computes - using the fitted statistical model, simulated
parameters, and explanatory data - the quantities of interest. Compared
with the zelig2 and param methods,

5

6 CHAPTER 1. QUICK START GUIDE

In the above description, replace the italicized model text with the name of
the developer’s model. For example, if the model’s name is “logit”, then the cor-
responding methods will be titled zelig2logit, param.logit, and qi.logit.

1.3 zelig.skeleton: Automating Zelig Model Cre-
ation

The fastest way to setup and begin programming a Zelig model is the use the
zelig.skeleton function, available within the Zelig package. This function
allows a fast, simple way to create the zelig2, describe, param, and qi meth-
ods with the necessary boilerplate. As a result, zelig.skeleton closely mirrors
the package.skeleton method included in core R.

1.3.1 A Demonstrative Example

library(Zelig) # [1]

zelig.skeleton(

"my.zelig.package", # [2]

models = c("gamma", "logit"), # [3]

author = "Your Name", # [4]

email = "your.email@someplace.com" # [5]

)

1.3.2 Explanation of the zelig.skeleton Example

The above numbered comments correspond to the following:

[1] The Zelig package must be imported when using zelig.skeleton.

[2] The first parameter of zelig.skeleton specifies the name of the package

[3] The models parameter specifies the titles of the Zelig models to be included
in the package. In the above example, all necessary files and methods
for building the “gamma” and “logit” models will be included in Zelig
package.

[4] Specify the author’s name

[5] Specify the email address of the software maintainer

1.3.3 Conclusion

The zelig.skeleton function provides a way to automatically generate the nec-
essary methods and file to create an arbitrary Zelig package. The method body,
however, will be incomplete, save for some light documentation additions and

1.4. ZELIG2: INTERACTINGWITH EXISTING STATISTICALMODELS IN ZELIG7

programming boilerplate. For a detailed specification of the zelig.skeleton

method, refer to Zelig help file by typing:

library(Zelig)

?zelig.skeleton

in an interactive R-session.

1.4 zelig2 : Interacting with Existing Statistical
Models in Zelig

The zelig2 function acts as the bridge between the Zelig module and the exist-
ing statistical model. That is, the results of this function specify the parameters
to be passed to a previously completed statistical model-fitting function. In this
sense, there is nothing tricky about the zelig2 function. Simply construct a
list with key-value pairs in the following fashion:

• Keys (names on the lefthand-side of an equal sign) represent parameters
that are submitted to the existing model function

• Values (variables, etc. on the righthand-side of an equal sign) represent
values to set the corresponding the parameter to.

• Keys with leading periods are typically reserved for specific zelig2

purposes. In particular, the key .function specifies the name of the
function that calls the existing statistical model.

an ellipsis (. . .) specifies that all additional, optional parameters not specified in the sig-
nature of the zelig2model function method, will be included in the ex-
ternal method’s call, despite not being specifically set.

1.4.1 A Simple Example

For example, if a developer wanted to call an existing model "SomeModel" with
the parameter weights set to 1, the appropriate return-value (a list) for the
zelig2 function would be:

zelig2some.model <- function(formula, data) {

list(.function = "SomeModel",

formula = formula,

weights = 1

)

}

8 CHAPTER 1. QUICK START GUIDE

1.4.2 A More Detailed Example

A more typical example would be the case of fitting a basic logistic regression.
The following code, already implemented in Zelig, acts as an interface between
Zelig packages and R’s built-in glm function:

zelig2logit <- function (formula, weights = NULL, ..., data) {

list(.function = "glm", # [1]

formula = formula, # [2]

weights = weights, # ...

data = data, # ...

family = # [3]

binomial(link="logit"),

model = FALSE # ...

)

}

The comments in the above code correspond to the following:

[1] Pass all parameters to the glm function

[2] Specify that the parameters formula, weights, and data be given the same
values as those passed into the zelig2 function itself. That is, whichever
values the end-user passes to zelig will be passed to the glm function

[3] Specify that the parameters family and model always be given the cor-
responding values - binomial(link="logit") and FALSE - regardless of
what the end-user passes as a parameter.

Note that the parameters - formula, weights, data, family, model - cor-
respond to those of the glm function. In general, this will be the case for any
zelig2 method. That is, every zelig2 method should return a list containing
the parameters belonging to the external model, as well as, the reserved keyword
.function.

If you are unsure about the parameters that are passed to an existing sta-
tistical model, simply use the args or formals functions (included in R). For
example, to get a list of acceptable parameters to the glm function, simply type:

args(glm)

1.4.3 An Even-More Detailed Example

Occasionally the statistical model and the standard style of Zelig input differ.
In these instances, it may be necessary to manipulate information about the
formula and constraints. This additional step in building the zelig2 method
is common only amongst multivariate models, as seen below in the bprobit

model (bivariate probit regression for Zelig).

1.4. ZELIG2: INTERACTINGWITH EXISTING STATISTICALMODELS IN ZELIG9

zelig2bprobit <- function(formula, ..., data) {

[1]

formula <- parse.formula(formula, "bprobit")

[2]

tmp <- cmvglm(formula, "bprobit", 3)

return list

list(

.function = "vglm", # [3]

formula = tmp$formula, # [4]

family = bprobit, # [5]

data = data,

[6]

constraints = tmp$constraints

)

}

The following is an explanation of the above code:

[1] Convert Zelig-style formula data-types into the style that the vglm function
understands

[2] Extract constraint information from the formula object, as is the style
commonly supported by Zelig

[3] Specify the vglm as the statistical model fitting function

[4] Specify the formula to be used by the vglm function when performing
the model fitting. Note that this object is created by using both the
parse_formula and cmvglm functions

[5] Specify the family of the model

[6] Specify the constraints to be used by the vglm function when performing
the model fitting. Note that this object is created by using both the
parse_formula and cmvglm functions

Note that the functions parse.formula and cmvglm are included in the core
Zelig software package. Information concerning these functions can be found by
typing:

library(Zelig)

?parase.formula

?cmvglm

in an interactive R-session.

10 CHAPTER 1. QUICK START GUIDE

1.4.4 Summary and More Information aboput zelig2 Meth-
ods

zelig2 functions can be of varying difficulty - from simple parameter pass-
ing to reformatting and creating new data objects to be used by the external
model-fitting function. To see more examples of this usage, please refer to the
survey.zelig and multinomial.zelig packages. Regardless of the model’s
complexity, it ends with a simple list specifying which parameters to pass to a
preexisting statistical model.

For more information on the zelig2 function’s full features, see the Advanced
zelig2 Manual, or type:

library(Zelig)

?zelig2

within an interactive R-session.

1.5 param : Simulating Parameters

The param function simulates and specifies parameters necessary for computing
quantities of interest. That is, the param function is the ideal place to specify
information necessary for the qi method. This includes:

Ancillary parameters These parameters specifying information about the
underlying probability distribution. For example, in the case of the Nor-
mal Distribution, σ (standard deviation) and µ (mean) would be consid-
ered ancillary parameters.

Link function That is, the function providing the relationship between the
predictors and the mean of the distribution function. This is typically
of very little importance (compared to the inverse link function), but is
frequently included for completeness. For Gamma distribution, the link
function is the inverse function: f(x) = 1

x

Inverse link function Typically crucial for simulating quantities of interest of
Generalized Linear Models. For the binomial distribution, the inverse-link
function is the logit function: f(x) = ex

1+ex

Simulated Parameters These random draws simulate the parameters of the
fitted statistical model. Typically, the qi method uses these to simu-
late quantities of interest for the given model. As a result, these are of
paramount importance.

The following sections describe how these ideas correspond to the structure of
a well-written param function.

1.5. PARAM: SIMULATING PARAMETERS 11

1.5.1 The Function Signature

The param function takes only two parameters, but outputs a wealth of informa-
tion important in computing quantities of interest. The following is the function
signature:

param.logit <- function (obj, num)

The above parameters are:

obj An object of class zelig 1. This contains the fitted statistical model and
associated information.

num An integer specifying the number of simulations to be drawn. This value
is specified by the end-user, and defaults to 1000 if no value is specified.

1.5.2 The Function Return Value

In similar fashion to the zelig2 method, the param method takes return values
as a list of key-value pairs. However, the options are not as diverse. That is, the
list can only be given a set of specific values: ancillary, coef, simulations,
link, linkinv, and family.

In most cases, however, the parameters ancillary, simulations, and linkinv

are sufficient. The following is an example take from Zelig’s gamma model:

1For a detailed specification of the zelig class, type: ?zelig within a interactive Zelig-
session.

12 CHAPTER 1. QUICK START GUIDE

Simulate Parameters for the gamma Model

param.gamma <- function(obj, num) {

NOTE: gamma.shape is a method belonging to the

GLM class, specifying maximum likelihood

estimates of the distribution’s shape

parameter. It is a list containing two

values: ’alpha’ and ’SE’

shape <- gamma.shape(obj)

simulate ancillary parameters

alpha <- rnorm(n=num, mean=shape$alpha, sd=shape$SE)

simulate maximum

sims <- mvrnorm(n = num, mu = coef(obj), Sigma = vcov(obj))

return results

list(

alpha = alpha, # [1]

simulations = sims, # [2]

...

[3]

linkinv = function (x) 1/x

)

}

The above code does the following:

[1] Specify the ancillary parameters, typically referred to as the greek letter
α. In the above example, alpha is the shape of the model’s underlying
gamma distribution.

[2] Specify the parameter simulations, typically referred to as the greek letter
β, to be used in the qi function.

[3] Specify the inverse-link function 2, used to compute expected values and a
variety of other quantities of interest, once samples are extracted from the
model’s statistical distribution.

2The “inverse-link” function is also commonly referred to as the “mean” function. Typ-
ically, this function specifies the relationship between linear predictors and the mean of a
distribution function. As a result, it is only used in describing generalized linear models

1.6. QI: SIMULATING QUANTITIES OF INTEREST 13

1.5.3 Summary and More Information param Methods

The param method’s basic purpose is to describe the statistical and systematic
variables of the Zelig model’s underlying distribution. Defining this method
is an important step towards simplifying the sim method. That is, by speci-
fying features of the model - coefficients, systematic components, inverse link
functions, etc. - and simulating specific parameters, the sim method can focus
entirely on simulating quantities of interest.

1.6 qi: Simulating Quantities of Interest

The qi function of any Zelig model simulates quantities of interest using the
fitted statistical model, taken from the zelig2 function, and the simulated
parameters, taken from the param function. As a result, the qi function is the
most important component of a Zelig model.

1.6.1 The qi Function Signature

While the implementation of the qi function can differ greatly from one model
to another, the signature always remains the same and closely parallels the
signature of the sim function.

qi.logit <- function(obj, x=NULL, x1=NULL, y=NULL, param=NULL)

1.6.2 The qi Function Return Values

Similar to the return values of both the zelig2 and param function, the qi

function takes an list of key-value pairs as a return value. The keys, however,
follow a much simpler convention, and a single rule: the key (left-side of the
equal sign) is a quoted character-string naming the quantity of interest and the
value (right-side of the equal sign) are the actual simulations.

The following is a short example:

list(

"Expected Value" = ev,

"Predicted Value" = pv

)

where ev and pv are respectively simulations of the model’s expected values and
predicted values.

1.6.3 Coding Conventions for the qi Function

While the following is unnecessary, it provides a few simple guidelines to sim-
plifying and improving readability of a model’s qi function:

14 CHAPTER 1. QUICK START GUIDE

• Divide repetitive work amongst other functions. For example, if you sim-
ulate an expected value for both the x and x1, it is better to write a
.compute.ev function and simply call it twice

• Always compute an expected values and predicted values independently
and before writing code to create first differences, risk ratios, and average
treatment effects

• Write code for average treatment effects only after all the other code has
been debugged and completed

1.6. QI: SIMULATING QUANTITIES OF INTEREST 15

1.6.4 A Simplified Example

The following is a simplified example of the qi function for the logit model. Note
that the example is divided into two sections: one specifying the return values
and titles of the quantities of interest (see Section 1.6.4) and one computing the
simulated expected values of the model (see Section 1.6.4).

qi.logit Function

#’ simulate quantities of interest for the logit models

qi.logit <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000,

param=NULL) {

[1]

ev1 <- .compute.ev(obj, x, num, param)

ev2 <- .compute.ev(obj, x1, num, param)

[2]

list(

"Expected Values: E(Y|X)" = ev1,

"Expected Values (for X1)" = ev2,

[3]

"First Differences: E(Y|X1) - E(Y|X)" = ev2 - ev1

)

}

.compute.ev Function

.compute.ev <- function(obj, x=NULL, num=1000, param=NULL) {

values of NA are ignored by the summary function

if (is.null(x))

return(NA)

extract simulations

coef <- coef(param)

link.inverse <- linkinv(param)

eta <- coef %*% t(x)

invert link function

theta <- matrix(link.inverse(eta), nrow = nrow(coef))

ev <- matrix(theta, ncol=ncol(theta))

ev

}

16 CHAPTER 1. QUICK START GUIDE

The above code illustrates a few of the ideas:

[1] Compute quantities of interest using re-usable functions that express the
idea clearly. This both reduces the amount of code necessary to produce
the simulations, and improves readability of the source code.

[2] Return quantities of interest as a list. Note: titles of quantities of interest
are on the left of the equal signs, while simulated values are on the right.

[3] Simulate first differences by using two previous computed quantities of in-
terest.

[4] Define an additional function that simulates expected values, rather than
placing such code in the actual qi method.

In addition, this function two generic functions that are defined in the Zelig
software suite, and are particularly used with the param class:

coef Extract the simulations of the parameters. Specifically, this returns the
simulations produced in the param function

linkinv Return the inverse of the link function. Specifically, this returns the
inverse-link functions specified in the param function

1.6.5 Summary and More Information about qi Methods

The qi function offers a simple template for computing quantities of interest.
Particularly, if a few a coding conventions are followed, the qi function can
provide transparent, easy-to-read simulation methods.

1.7 Conclusion

The above sections detail the fastest way to develop Zelig models. For the vast
majority of applications and external statistical packages, this should suffice.
However, at times, more elaborate measures may need to be taken. If this is the
case, the API specifications for each particular methods should be read, since a
wealth of information has been omitted in order to simplify this tutorial.

For more detailed information, consult the zelig2, param, and qi sections
of the Zelig Development manual.

Chapter 2

describe: Describing a Zelig
Model

2.1 Introduction

When developing a Zelig model, developers have the ability to specify citation
and parameter information directly into their model’s code. This allows external
API’s, such as those provided by the Dataverse1, to make use of Zelig models
without any additional programming on the part of the developer. In this
capacity, the describe method has two purposes:

1. to give correct citation information for Zelig models

2. to declare the type of data that can be processed by the Zelig model

2.2 describe Method Signature

The describe method takes a single parameter - the dots argument. This does
not vary between Zelig models. As an example, the logit model’s method
signature is:

describe.logit <- function (...) {

...

}

2.3 describe Method Return Value

The describe method’s signature is simply a list containing several required
key-value pairs:

1http://thedata.org/

17

18 CHAPTER 2. DESCRIBE

• author: a vector of character-strings specifying author names

• text: a character-string specifying a longer, more specific title to the
Zelig model. For example, the logit models text field contains the value:
”Logistic Regression for Dichotomous Dependent Variables”

• year: an integer specifying the year that the Zelig model was originally
developed

In addition to these key-value pairs, several optional parameters may be in-
cluded:

• category: a character-string specifying the category of statistical regres-
sion to which the given model belongs

• package: a list-style object specifying information for integration with the
Dataverse2

2.4 describe Notable Features

The describe method notably does very little computation. That is, while
it allows the developer to specify a large amount of citation information, it
does not necessarily compute anything. Typically, this equates to the describe

method consisting entirely of a return-value.

2.5 Example of a describe Function

The following sections detail the describe method of the logit Zelig model.

2.5.1 describe.logit.R

The following example is an excerpt from Zelig’s logit model:

describe.logit <- function(...)

list(

[1]

authors = c("Kosuke Imai", "Olivia Lau", "Gary King"),

[2]

year = 2008,

[3]

text = "Logistic Regression for Dichotomous Dependent Variables"

)

2The Dataverse (http://thedata.org) is a platform for extracting, sharing, and storing
research data. With the correct implementation of the describe method, any Zelig model can
interact directly and seamlessly with data stored on the Dataverse.

2.6. SUMMARY AND CONCLUSION OF THE DESCRIBE METHOD 19

2.5.2 Explanation of describe.logit.R

The above code corresponds to the following ideas:

[1] Specify that the model had three contributors - Kosuke Imai, Olivia Lau
and Gary King

[2] Specify the original year of authorship as 2008

[3] Specify the complete name of the model, that should be used for citation
purposes

2.5.3 Results of describe.logit.R

The citation resulting from the above code example

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2008.

"logit: Logistic Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau,

"Zelig: Everyone’s Statistical Software,"

http://gking.harvard.edu/zelig

2.6 Summary and Conclusion of the describe

Method

The describe method provides a simple mechanism for specifying citation in-
formation. As a result, this method can be written extremely tersely.

20 CHAPTER 2. DESCRIBE

Chapter 3

The zelig2 Method API

3.1 Introduction

Developers can develop a model, write the model-fitting function, and test it
within the Zelig framework without explicit intervention from the Zelig team.
This modularity relies on two R programming conventions:

1. wrappers, which pass arguments from R functions to other R functions
or foreign function calls (such as in C, C++, or Fortran). This step is
facilitated by - as will be explained in detail in the upcoming chapter -
the zelig2 function.

2. classes, which tell generic functions how to handle objects of a given
class. For a statistical model to be compliant with Zelig, the model-fitting
function must return a classed object.

Zelig implements a unique and simple method for incorporating existing
statistical models which lets developers test within the Zelig framework without
any modification of both their own code or the zelig function itself. The heart
of this procedure is the zelig2 function, which acts as an interface between
the zelig function and the existing statistical model. That is, the zelig2

function maps the user-input from the zelig function into input for the existing
statistical model’s constructor function. Specifically, a Zelig model requires:

1. An existing statistical model, which is invoked through a function call and
returns an object

2. A zelig2 function which maps user-input from the zelig function to the
existing statistical model

3. A name for the zelig model, which can differ from the original name of
the statistical model.

21

22 CHAPTER 3. ZELIG2

3.2 zelig2 Method Signature

The zelig2 method’s signature typically differs between Zelig models. This
is essential, since statistical models generally have a wide-array of available
parameters. To accommodate this, the zelig2 method’s signature can be any
legal function declaration that adhere to the following guidelines:

1. The zelig2 method should be simply named zelig2model, where model
is the name of the model, that will be used by zelig to reference it

2. The first parameter must be titled formula

3. The final parameter must be titled data

4. The ellipsis parameter must exist somewhere between the formula and
data parameters

5. Any parameter necessary for use by the external model should be included
in the method’s parameters

The following is an example taken from the logit model:

zelig2logit <- function(formula, weights=NULL, ..., data) {

...

}

3.3 zelig2 Return Value

The zelig2 method’s return value should be a list. The return value of the
zelig method has two reserved keywords:

1. .function: the name of the external method1 as a character-string

2. data: the data.frame used by the external method to compute the sta-
tistical fit

3. all other keywords without a leading dot specify a parameter to be
passed to the external. This

In addition to these parameters, two other other optional reserved keywords
exist:

1. .hook: a character-string specifying a function to run immediately after
the external function executes

1“The external method” can be any model-fitting function which returns a valid formula

object, when the formula method is called with it as a parameter. That is, basically any R
object can be used as a fitted model, so long as it as a valid slot that can be considered a
formula.

3.4. NOTABLE FEATURES OF THE ZELIG2 METHOD 23

2. .post: a character-string specifying a function to run immediately before
the param method executes

For more details on the .hook and .post reserved keywords, see Zelig’s hook
API specification.

3.4 Notable Features of the zelig2 Method

The zelig2 method is designed to closely resemble the function call to the ex-
ternal model. That is, this method’s parameters and return value should always
closely resemble the allowable parameters of the external model’s function. As a
result, a good rule of thumb is to include the exact parameters from the model in
the zelig2 method, and only remove those that are irrelevant in the developer’s
Zelig implementation.

3.5 Details in Coding the zelig2 Method

Typically, the zelig2 method can be coded in a straightforward manner, need-
ing little additional code aside from its return-value. This may however not be
the case for models that contain an atypical style of formula. These types of
formula include:

• multivariate and multinomial regressions

• regressions containing unique syntax, such as special tags

• regressions that accept lists of formulas

One of the main goals of the Zelig software suite is to unify the language
and syntax used in the man disparate statistical models. As a result, Zelig
models that fall into the above categories often benefit from the existence of
helper functions that convert the Zelig-style formula syntax into that used by
the external model. Useful examples of this type of zelig2 method can be
found in both the mixed.zelig and bivariate.zelig packages.

3.6 Example of a zelig2 Method

The following is an illustrative example taken from the Zelig core package and
its explanation.

24 CHAPTER 3. ZELIG2

3.6.1 zelig2logit.R

[1]

zelig2logit <- function(formula, ..., weights=NULL, data)

list(

[2]

.function = "glm",

[3]

formula = formula,

data = data,

weights = weights,

[4]

family = binomial(link="logit"),

model = FALSE,

[5]

...

)

3.6.2 Explanation of zelig2logit.R

The following correspond to the above example:

[1] The method name and parameter list specify two things:

• the name of the zelig2 method by naming the function zelig2model,
where model is the name of the model being developed

• the list of acceptable parameter to pass to this Zelig model

[2] Specify the name of the external model

[3] Specify parameters that are user-defined. Note that the value of formula,
data, and weights vary with user-input, because they are part of the
zelig2 method’s signature

[4] Specify parameter that do not vary with user-input.

[5] Specify that any additional parameters to the zelig2 method be include in
the call to the external model

A zelig2model function must always return a list as its return value.
The entries of the returned list have the following format:

Chapter 4

The param Method API

4.1 Introduction

Several general features - sampling distribution, link function, systematic com-
ponent, ancillary parameters, etc. - comprise statistical models. These features,
while vastly differing between any two given specific models, share features that
are easily classifiable, and usually necessary in the simulation of quantities of
interest. That is, all statistical models have similar traits, and can be simulated
using similar methods. Using this fact, the parameters class provides a set of
functions and data-structures to aid in the planning and implementation of the
statistical model.

4.2 param Method Signature

The signature of the param method is straightforward and does not vary between
differ Zelig models.

param.logit <- function (obj, num, ...) {

...

}

4.3 param Return Value

The return value of a param method is simply a list containing several entries:

simulations A vector or matrix of random draws taken from the model’s dis-
tribution function. For example, a logit model will take random draws
from a Multivariate Normal distribution.

alpha A vector specifying parameters to be passed into the distribution func-
tion. Values for this range from scaling factors to statistical means.

25

26 CHAPTER 4. PARAM

fam An optional parameter. fam must be an object of class “family”. This
allows for the implicit specification of the link and link-inverse function.
It is recommend that the developer set either this, the link, or the linkinv
parameter explicitly. Setting the family object implicitly defines link and
linkinv.

link An optional parameter. link must be a function. Setting the link function
explicitly is useful for defining arbitrary statistical models. link is used
primarily to numerically approximate its inverse - a necessary step for
simulating quantities of interest.

linkinv An optional parameter. linkinv must be a function. Setting the link’s
inverse explicitly allows for faster computations than a numerical approxi-
mation provides. If the inverse function is known, it is recommended that
this function is explicitly defined.

4.4 Notable Features of the param Method

The param method is typically a brief, highly structured method. This is be-
cause simulating parameters of a statistical model is frequently straightforward,
and reduced to simply computing maximum likelihood estimates based on in-
formation from the fitted, external model.

4.5 Details in Coding the param Method

The param method’s main purpose is to compute or simulate ancillary param-
eters from the statistical model. In practice, this step is typically accomplished
by sampling a particular distribution or via maximum-likelihood estimation.

While the simple method of returning a vector or matrix from a param
function is extremely simple, it has no method for setting link or link-inverse
functions for use within the actual simulation process. That is, it does not
provide a clear, easy-to-read method for simulating quantities of interest. By
returning an indexed list - or a parameters object - the developer can provide
clearly labeled and stored link and link-inverse functions, as well as, ancillary
parameters.

4.6 Example of setting the fam attribute

The following are two slightly different param methods.

4.6.1 param.logit.R

param.logit <- function(z, x, x1=NULL, num=num)

list(

coef = mvrnorm(n=num, mu=coef(z), Sigma=vcov(z)),

4.6. EXAMPLE OF SETTING THE FAM ATTRIBUTE 27

alpha = NULL,

fam = binomial(link="logit")

)

4.6.2 Explanation of param.logit.R

The above example shows how link and link-inverse functions (for a “logit”
model) can be set using a “family” object. Family objects exist for most statis-
tical models - logit, probit, normal, Gaussian, et cetera - and come preset with
values for link and link-inverses. This method does not differ immensely from
the simple, vector-only method; however, it allows for the use of several API
functions - link, linkinv, coef, alpha - that improve the readability and simplicity
of the model’s implementation.

The param function and the parameters class offer methods for automating
and simplifying a large amount of repetitive and cumbersome code that may
come with building the arbitrary statistical model. While both are in principle
entirely optional - so long as the qi function is well-written - they serve as a
means to quickly and elegantly implement Zelig models.

28 CHAPTER 4. PARAM

4.7 Example of setting the link and linkinv at-
tributes

4.7.1 param.poisson.R

param.normal.survey <- function(obj, num=1000, ...) {

[1]

df <- obj$result$df.residual

sig2 <- summary(obj)$dispersion

alpha <- sqrt(df*sig2/rchisq(num, df=df))

[2]

simulations <- mvrnorm(num, coef(obj), vcov(obj))

[3]

fam <- gaussian()

[4]

list(

simulations = simulations,

alpha = alpha,

fam = fam

)

}

}

4.7.2 Explanation of param.poisson.R

The above example shows how a parameters object can be created with by
explicitly setting the statistical model’s link function. The linkinv parameter
is purely optional, since Zelig will create a numerical inverse if it is undefined.
However, the computation of the inverse is typically slower than non-iterative
methods. As a result of this, if the link-inverse is known, it should be set, using
the linkinv parameter.

The above example can also contain an alpha parameter, in order to store
important ancillary parameters - mean, standard deviation, gamma-scale, etc.
- that would be necessary in the computation of quantities of interest.

Chapter 5

The qi Method API

5.1 Introduction

For any Zelig module, the qi function is ultimately the most important piece of
code that must be written; it describes the actual process which simulates the
quantities of interest. Because of the nature of this process - and the gamut of
statistical packages and their underlying statistical model - it is rare that the
simulation process can be generalized for arbitrary fitted models. Despite this,
it is possible to break down the simulation process into smaller steps.

5.2 qi Method Signature

The qi function’s signature accepts 4 parameters:

obj: An object of type zelig. This wraps the fitted model in the slot “result”

x: An object of type setx. This object is used to compute important coeffi-
cients, parameters, and features of the data.frame passed to the function
call

x1: Also an object of type “setx”. This object is used in a similar fashion, how-
ever its presence allows a variety of quantities of interest to be computed.
Notably, this is a necessary parameter to compute first-differences

num: The number of simulations to compute

param: An object of type param. This is the resulting object from the param

function, typically containing a variety of important quantities - simulations,
the inverse link function,

qi.your_model_name <- function(z, x=NULL, x1=NULL, num=1000) {

start typing your code here

...

...

29

30 CHAPTER 5. QI

5.3 qi Method Return Value

In order for Zelig to process the simulations, they must be returned in one of
several formats:

• list(

"TITLE OF QI 1" = val1,

"TITLE OF QI 2" = val2,

any number of title-val pairs

...

"TITLE OF QI N" = val.n

)

• make.qi(

titles = list(title1, title2),

stats = list(val1, val2)

)

In the above example,val1, val2 are data.frames, matrices, or lists represent-
ing the simulations of the quantities of interests, and title1, title2 - and any
number of titles - are character-strings that will act as human-readable descrip-
tions of the quantities of interest. Once results are returned in this format,
Zelig will convert the results into a machine-readable format and summarize
the simulations into a comprehensible format.

NOTE: Because of its readability, it is suggested that the first method is
used when returning quantities of interest.

5.4 Notable Features of qi Function

The typical qi function has several basic procedures:

1. Call the param function: This is entirely optional but sometimes impor-
tant for the clarity of your algorithm. This step typically consists of taking
random draws from the fitted model’s underlying probability distribution.

2. Compute the Quantity of Interest : Depending on your model, there are
several ways to compute necessary quantities of interest. Typical methods
for computing quantities of interest include:

(a) Using the sample provided by ‘param’ to generate simulations of the
quantities of interest

(b) Using a Maximum-likelihood estimate on the fitted model

3. Create a list of titles for your Quantities of Interest :

4. Generate the Quantity of Interest Object : Finally, with the computed
Quantities of Interest, you must

5.5. DETAILS IN CODING THE QI METHOD 31

5.5 Details in Coding the qi Method

The function body of qi function varies largely from model to model. As a result,
it is impossible to create general guidelines to simulate quantities of interest - or
even determine what the quantity of interest is. Typical methods for computing
quantities of interest include:

• Implementing sampling algorithms based on the underlying fitted model,
or

• “Predicting” a large number of values from the fitted model

5.6 Simple Example qi function (qi.logit.R)

#’ simulate quantities of interest for the logit models

qi.logit <- function(z, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) {

compute expected values using the function ".compute.ev"

ev1 <- .compute.ev(obj, x, num, param)

ev2 <- .compute.ev(obj, x1, num, param)

return simulations of quantities of interest

list(

"Expected Values: E(Y|X)" = ev1,

"Expected Values (for X1): E(Y|X1)" = ev2,

"First Differences: E(Y|X1) - E(Y|X)" = ev2 - ev1

)

}

32 CHAPTER 5. QI

Chapter 6

Zelig Style Guide

6.1 Mandatory Naming Conventions

When developing a Zelig package, it is important to write code in a style that is
consistent with existing code and clearly understandable. The following specifies
guidelines that are suggested for the any Zelig package, and strictly enforced for
commits to Zelig’s main trunk.

6.1.1 Function and Method Naming

The Zelig developer writes Functions and Class Methods as verbs in camel-case
verbs with leading capital letters. That is, a function name must:

1. be a verb

2. have a leading capital letter

3. contain only alphanumeric characters

4. use a capital letter to denote the beginning of a new word within

the function name

5. treat all abbreviations as being lowercase

For example, if the developer is writing a function that converts results to
HTML, then the function should be named: ResultsToHtml.

6.1.2 Generic Function Naming

Generic functions, by Zelig’s convention, are preferably single-word lowercase
verbs. If it is impossible to phrase the generic function as a single-word, then it
should be named as a verb in camel case with a leading lowercase letter. It is
highly recommended that careful consideration be taken when naming generic
functions. That is, a generic function name must:

33

34 CHAPTER 6. ZELIG STYLE GUIDE

1. be a verb

2. have a leading lowercase letter

3. contain only alphanumeric characters

4. use a capital letter to denote the presence of a space between

words

5. treat all abbreviations as being lowercase

For example, if the developer is writing a function that stores class informa-
tion in a log-file for a variety of datatypes, then the function be named: store

or writeToLog.

6.1.3 Class Naming

Class names are preferably single-word, alphanumeric, and camel-case nouns.
This convention may be loosely followed. The name of the constructor function
and the class name must be identical. That is, a class name must:

1. be a noun

2. contain only alphanumeric characters

3. match their function/constructors name

For example, if the developer writes a class that represents a polygon, then
it should be named: polygon or Polygon. The constructor function should be
named to match this. Furthermore, classes should be kept in their own R file
which is similarly named.

6.1.4 Variables

Variables follow very different conventions that functions, methods, classes, and
generics. Few rules govern their naming, except that they are must be all lower-
case and descriptive. That is, a variable name must:

• contain only lowercase letters and dots

• be descriptive

• be longer than three letters long, unless it is an iterator

For example,

6.1.5 Private Functions and Variables

Functions and variables that are intended to be hidden from the user follow all
the rules of their visible counterparts, except they must begin with a leading
dot. This is so that the export command will ignore them.

6.2. SUGGESTED CONVENTIONS 35

6.1.6 Operator Overloading

While in many circumstances operator overloading is a useful tool, it is highly
discouraged in Zelig packages. Please store all overloaded operators in a file
named ZELIG zzz model class operators.R, where model class is the model’s
class. Note that, because operators do not begin with an alphabet character,
they will be ignored by the standard construction of a NAMESPACE file. As a
result, operators must be explicitly exported in the NAMESPACE file.

6.2 Suggested Conventions

6.2.1 S3 Object Orientation

While S4 objects offer a stricter style of object-oriented programming, it is still
standard to write functions as S3 objects due to better support and consistency
with core packages (all of which as S3 objects). Zelig can interface with S4
objects, however the results at times are unpredictable, and might only be
suitable for truly savvy R developers.

6.2.2 Package Naming

It is suggested that packages depending on the Zelig library have ”.zelig” ap-
pended to them. This will make clear that the syntax and structure of the
package is compatible with that of other Zelig objects.

6.3 Synopsis

function verb, camel-case, leading capital letter

method same as function

generic function verb, alphanumeric, lowercase leading letter, preferably sin-
gle word

variable noun with lowercase letters, numbers, and dots only

class object alphanumeric characters only. name must match constructor
name and filename

hidden variable or function typical naming conventions but with leading
dot

overloaded operators stored in ZELIG zzz model name operators.R

