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Chapter 1

Introduction to Zelig

1.1 What Zelig and R Do

Zelig1 is an easy-to-use program that can estimate and help interpret the results of an enormous and growing
range of statistical models. It literally is “everyone’s statistical software” because Zelig’s unified framework
incorporates everyone else’s (R) code. We also hope it will become “everyone’s statistical software” for
applications, and we have designed Zelig so that anyone can use it or add their models to it.

When you are using Zelig, you are also using R, a powerful statistical software language. You do not
need to learn R separately, however, since this manual introduces you to R through Zelig, which simplifies
R and reduces the amount of programming knowledge you need to get started. Because so many individuals
contribute different packages to R (each with their own syntax and documentation), estimating a statistical
model can be a frustrating experience. Users need to know which package contains the model, find the
modeling command within the package, and refer to the manual page for the model-specific arguments. In
contrast, Zelig users can skip these start-up costs and move directly to data analyses. Using Zelig’s unified
command syntax, you gain the convenience of a packaged program, without losing any of the power of R’s
underlying statistical procedures.

In addition to generalizing R packages and making existing methods easier to use, Zelig includes infras-
tructure that can improve all existing methods and R programs. Even if you know R, using Zelig greatly
simplifies your work. It mimics the popular Clarify program for Stata (and thus the suggestions of King,
Tomz, and Wittenberg, 2000) by translating the raw output of existing statistical procedures into quantities
that are of direct interest to researchers. Instead of trying to interpret coefficients parameterized for mod-
eling convenience, Zelig makes it easy to compute quantities of real interest: probabilities, predicted values,
expected values, first differences, and risk ratios, along with confidence intervals, standard errors, or full
posterior (or sampling) densities for all quantities. Zelig extends Clarify by seamlessly integrating an option
for bootstrapping into the simulation of quantities of interest. It also integrates a full suite of nonparametric
matching methods as a preprocessing step to improve the performance of any parametric model for causal
inference (see MatchIt). For missing data, Zelig accepts multiply imputed datasets created by Amelia (see
King, Honaker, Joseph, and Scheve, 2001) and other programs, allowing users to analyze them as if they
were a single, fully observed dataset. Zelig outputs replication data sets so that you (and if you wish, anyone
else) will always be able to replicate the results of your analyses (see King, 1995). Several powerful Zelig
commands also make running multiple analyses and recoding variables simple.

Using R in combination with Zelig has several advantages over commercial statistical software. R and
Zelig are part of the open source movement, which is roughly based on the principles of science. That is,
anyone who adds functionality to open source software or wishes to redistribute it (legally) must provide the

1Zelig is named after a Woody Allen movie about a man who had the strange ability to become the physical reflection of
anyone he met — Scottish, African-American, Indian, Chinese, thin, obese, medical doctor, Hassidic rabbi, anything — and
thus to fit well in any situation.
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software accompanied by its source free of charge.2 If you find a bug in open source software and post a note
to the appropriate mailing list, a solution you can use will likely be posted quickly by one of the thousands
of people using the program all over the world. Since you can see the source code, you might even be able
to fix it yourself. In contrast, if something goes wrong with commercial software, you have to wait for the
programmers at the company to fix it (and speaking with them is probably out of the question), and wait
for a new version to be released.

We find that Zelig makes students and colleagues more amenable to using R, since the startup costs are
lower, and since the manual and software are relatively self-contained. This manual even includes an appendix
devoted to the basics of advanced R programming, although you will not need it to run most procedures in
Zelig. A large and growing fraction of the world’s quantitative methodologists and statisticians are moving
to R, and the base of programs available for R is quickly surpassing all alternatives. In addition to built-in
functions, R is a complete programming language, which allows you to design new functions to suit your
needs. R has the dual advantage that you do not need to understand how to program to use it, but if it
turns out that you want to do something more complicated, you do not need to learn another program. In
addition, methodologists all over the world add new functions all the time, so if the function you need wasn’t
there yesterday, it may be available today.

1.2 Getting Help

You may find documentation for Zelig on-line (and hence must be on-line to access it). If you are unable to
connect to the Internet, we recommend that you print the pdf version of this document for your reference.

If you are on-line, you may access comprehensive help files for Zelig commands and for each of the models.
For example, load the Zelig library and then type at the R prompt:

> help.zelig(command) # For help with all zelig commands.

> help.zelig(logit) # For help with the logit model.

In addition, help.zelig() searches the manual pages for R in addition to the Zelig specific pages. On certain
rare occasions, the name of the help topic in Zelig and in R are identical. In these cases, help.zelig() will
return the Zelig help page by default. If you wish to access the R help page, you should use help(topic).

In addition, built-in examples with sample data and plots are available for each model. For example,
type demo(logit) to view the demo for the logit model. Commented code for each model is available under
the examples section of each model reference page.

Please direct inquiries and problems about Zelig to our listserv at zelig@lists.gking.harvard.edu. We
suggest you subscribe to this mailing list while learning and using Zelig: go to http://lists.hmdc.harvard.

edu/index.cgi?info=zelig. (You can choose to receive email in digest form, so that you will never receive
more than one message per day.) You can also browse or search our archive of previous messages before
posting your query.

1.3 How to Cite Zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

To refer to a particular Zelig model, please refer to the “how to cite” portion at the end of each model
documentation section.

2As specified in the GNU General License v. 2 http://www.gnu.org/copyleft.
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Chapter 2

Installing Zelig

2.1 Introduction

Zelig’s installation procedure is straightforward, though the package itself is not standalone, and requires the
installation of R version 2.13 (or greater). That is, because Zelig is written in the R statistical programming
language, it cannot be installed without support for the R programming language. As a result of this,
installing Zelig and Zelig-compliant packages can be divided into three tasks:

1. Download and Install R,

2. Install Zelig, and

3. Install Optional Zelig Add-ons

The following guide is intended to quickly and easily explain each of these steps.

2.2 Requirements for Installation

The Zelig software suite has only two requirements:

1. R version 2.13+, which can be downloaded at http://r-project.org/

2. A major operating system, either:

• Mac OS X 10.4+,

• Windows or

• Linux

Installation instructions for R can be found on the R-project website. Simply visit the download page,
and select any mirror link, though this one is recommended:

http://cran.opensourceresources.org/

2.3 Installing R

Installing R is typically straightforward, regardless of which operating system is being used. Several useful
documents exist on CRAN (The Comprehensive R Archive Network) for explanation and troubleshooting
of R installation. These documents can be found on any CRAN mirror. Specifically, the complete guide to
install R can be found at:

http://cran.r-project.org/doc/manuals/R-admin.html
This document contains specific documents for installing R on Mac , Windows , and Unix-alike systems.
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2.4 Easy Installation

Once R version 2.13 or greater has been installed on the client’s machine, setting up Zelig is a breeze. R has
built-in facilities for managing the installation of statistical packages. This provides a simple mechanism for
installing Zelig, regardless of the operating system that is being used.

To install Zelig, as well as its add-on packages, simply:

1. Install R version 2.13 or greater. Download R from the R project’s website, which can be found
at http://cran.opensourceresources.org/

2. Launch R. Once R is installed, this program can be found wherever the computer stores applications
(e.g. “Program Files” on a Windows machine)

3. At the R command-prompt, type:

source("http://gking.harvard.edu/zelig/install.R")

This launches pre-written install script, which directs R to download all the appropriate statistical
packages associated with the Zelig software suite.

2.5 Advanced Installation

For users familiar with R and Zelig, it may be useful to selectively install packages. In order to do this, users
simply need to use the install.packages function built into R’s functionality.

2.5.1 Install Zelig without Additional Packages

This installation procedure will install Zelig without any add-on packages. That is, Zelig will only download
files necessarily for developing new Zelig packages and basic generalized linear model regressions - logit,
gamma, gaussian, etc.

To install this ”core” package, simply type the following from the R command prompt:

install.packages(

"Zelig",

repos = "http://r.iq.harvard.edu",

type = "source"

)

2.5.2 Install Add-on Packages

In addition to Zelig’s core package, which exclusively contains simple regression models and a Developers’
API for producing novel R packages, a myriad of Zelig add-on packages are available. These packages
supplement Zelig’s features, and add specialized, advanced models to Zelig.

List of Available Packages

These add-on packages include:

• bivariate.zelig: Bivariate Models for Logit and Probit Regressions

• gam.zelig: Generalized Additive Models for Logit, Gaussian, Poisson and Probit Regressions

• gee.zelig: Generalized Estimating Equation Models for Gamma, Logit, Gaussian, Poisson and Probit
Regressions
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• mixed.zelig: Mixed Effect Models (Multi-level) for Gamma, Logit, Least-squares, Poisson and Probit
Regressions

• multinomial.zelig: Multinomial Models Logit and Probit Regressions

• ordinal.zelig: Ordinal Models for Logit and Probit Regressions

• survey.zelig: Survey-weighted Models for Gamma, Logit, Normal, Poisson and Probit Regressions

Using install.packages

To download any of these packages independently, simply type the following from an R command prompt:

install.packages(

"MODEL NAME",

repos = "http://r.iq.harvard.edu/",

type = "source"

)

Where "MODEL NAME" is replaced with the title of the Add-on packages in the above itemized list. For
example, to download ”Generalized Estimating Equation Models...”, note that its package name is gee.zelig,
and type from the R command prompt:

install.packages(

"gee.zelig",

repos = "http://r.iq.harvard.edu/",

type = "source"

)

2.6 Post-Installation

Barring any installation errors, Zelig and any add-on packages that were manually installed, should now be
available from an R-session. Simply type from an R command prompt:

library(Zelig)

?Zelig

To begin interacting and using the Zelig software package. Additionally, demo files can be listed via the
command:

demo(package="Zelig")
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Chapter 3

R Syntax

3.1 Command Syntax

Once R is installed, you only need to know a few basic elements to get started. It’s important to remember
that R, like any spoken language, has rules for proper syntax. Unlike English, however, the rules for
intelligible R are small in number and quite precise (see Section 3.1.2).

3.1.1 Getting Started

1. To start R under Linux or Unix, type R at the terminal prompt or M-x R under ESS.

2. The R prompt is >.

3. Type commands and hit enter to execute. (No additional characters, such as semicolons or commas,
are necessary at the end of lines.)

4. To quit from R, type q() and press enter.

5. The # character makes R ignore the rest of the line, and is used in this document to comment R code.

6. We highly recommend that you make a separate working directory or folder for each project.

7. Each R session has a workspace, or working memory, to store the objects that you create or input.
These objects may be:

(a) values, which include numerical, integer, character, and logical values;

(b) data structures made up of variables (vectors), matrices, and data frames; or

(c) functions that perform the desired tasks on user-specified values or data structures.

After starting R, you may at any time use Zelig’s built-in help function to access on-line help for any
command. To see help for all Zelig commands, type help.zelig(command), which will take you to the
help page for all Zelig commands. For help with a specific Zelig or R command substitute the name of the
command for the generic command. For example, type help.zelig(logit) to view help for the logit model.

3.1.2 Details

.
Zelig uses the syntax of R, which has several essential elements:

1. R is case sensitive. Zelig, the package or library, is not the same as zelig, the command.
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2. R functions accept user-defined arguments: while some arguments are required, other optional argu-
ments modify the function’s default behavior. Enclose arguments in parentheses and separate multiple
arguments with commas. For example, print(x) or print(x, digits = 2) prints the contents of the
object x using the default number of digits or rounds to two digits to the right of the decimal point,
respectively. You may nest commands as long as each has its own set of parentheses: log(sqrt(5))

takes the square root of 5 and then takes the natural log.

3. The <- operator takes the output of the function on the right and saves them in the named object
on the left. For example, z.out <- zelig(...) stores the output from zelig() as the object z.out
in your working memory. You may use z.out as an argument in other functions, view the output by
typing z.out at the R prompt, or save z.out to a file using the procedures described in Section 3.2.3.

4. You may name your objects anything, within a few constraints:

• You may only use letters (in upper or lower case) and periods to punctuate your variable names.

• You may not use any special characters (aside from the period) or spaces to punctuate your
variable names.

• Names cannot begin with numbers. For example, R will not let you save an object as 1997.election
but will let you save election.1997.

5. Use the names() command to see the contents of R objects, and the $ operator to extract elements
from R objects. For example:

# Run least squares regression and save the output in working memory:

> z.out <- zelig(y ~ x1 + x2, model = "ls", data = mydata)

# See what's in the R object:

> names(z.out)

[1] "coefficients" "residuals" "effects" "rank"

# Extract and display the coefficients in z.out:

> z.out$coefficients

6. All objects have a class designation which tells R how to treat it in subsequent commands. An object’s
class is generated by the function or mathematical operation that created it.

7. To see a list of all objects in your current workspace, type: ls(). You can remove an object permanently
from memory by typing remove(goo) (which deletes the object goo), or remove all the objects with
remove(list = ls()).

8. To run commands in a batch, use a text editor (such as the Windows R script editor or emacs) to
compose your R commands, and save the file with a .R file extension in your working directory. To
run the file, type source("Code.R") at the R prompt.

If you encounter a syntax error, check your spelling, case, parentheses, and commas. These are the most
common syntax errors, and are easy to detect and correct with a little practice. If you encounter a syntax
error in batch mode, R will tell you the line on which the syntax error occurred.

3.2 Data Sets

3.2.1 Data Structures

Zelig uses only three of R’s many data structures:

1. A variable is a one-dimensional vector of length n.
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2. A data frame is a rectangular matrix with n rows and k columns. Each column represents a variable
and each row an observation. Each variable may have a different class. (See Section 3.3.1 for a list of
classes.) You may refer to specific variables from a data frame using, for example, data$variable.

3. A list is a combination of different data structures. For example, z.out contains both coefficients

(a vector) and data (a data frame). Use names() to view the elements available within a list, and the
$ operator to refer to an element in a list.

3.2.2 Loading Data

Datasets in Zelig are stored in “data frames.” In this section, we explain the standard ways to load data
from disk into memory, how to handle special cases, and how to verify that the data you loaded is what you
think it is.

Standard Ways to Load Data

Make sure that the data file is saved in your working directory. You can check to see what your working
directory is by starting R, and typing getwd(). If you wish to use a different directory as your starting
directory, use setwd("dirpath"), where "dirpath" is the full directory path of the directory you would like
to use as your working directory.

After setting your working directory, load data using one of the following methods:

1. If your dataset is in a tab- or space-delimited .txt file, use read.table("mydata.txt")

2. If your dataset is a comma separated table, use read.csv("mydata.csv").

3. To import SPSS, Stata, and other data files, use the foreign package, which automatically preserves
field characteristics for each variable. Thus, variables classed as dates in Stata are automatically
translated into values in the date class for R. For example:

> library(foreign) # Load the foreign package.

> stata.data <- read.dta("mydata.dta") # For Stata data.

> spss.data <- read.spss("mydata.sav", to.data.frame = TRUE) # For SPSS.

4. To load data in R format, use load("mydata.RData").

5. For sample data sets included with R packages such as Zelig, you may use the data() command,
which is a shortcut for loading data from the sample data directories. Because the locations of these
directories vary by installation, it is extremely difficult to locate sample data sets and use one of the
three preceding methods; data() searches all of the currently used packages and loads sample data
automatically. For example:

> library(Zelig) # Loads the Zelig library.

> data(turnout) # Loads the turnout data.

Special Cases When Loading Data

These procedures apply to any of the above read commands:

1. If your file uses the first row to identify variable names, you should use the option header = TRUE

to import those field names. For example,

> read.csv("mydata.csv", header = TRUE)
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will read the words in the first row as the variable names and the subsequent rows (each with the
same number of values as the first) as observations for each of those variables. If you have additional
characters on the last line of the file or fewer values in one of the rows, you need to edit the file before
attempting to read the data.

2. The R missing value code is NA. If this value is in your data, R will recognize your missing values as
such. If you have instead used a place-holder value (such as -9) to represent missing data, you need to
tell R this on loading the data:

> read.table("mydata.tab", header = TRUE, na.strings = "-9")

Note: You must enclose your place holder values in quotes.

3. Unlike Windows, the file extension in R does not determine the default method for dealing with the
file. For example, if your data is tab-delimited, but saved as a .sav file, read.table("mydata.sav")
will load your data into R.

Verifying You Loaded The Data Correctly

Whichever method you use, try the names(), dim(), and summary() commands to verify that the data was
properly loaded. For example,

> data <- read.csv("mydata.csv", header = TRUE) # Read the data.

> dim(data) # Displays the dimensions of the data frame

[1] 16000 8 # in rows then columns.

> data[1:10,] # Display rows 1-10 and all columns.

> names(data) # Check the variable names.

[1] "V1" "V2" "V3" # These values indicate that the variables

# weren't named, and took default values.

> names(data) <- c("income", "educate", "year") # Assign variable names.

> summary(data) # Returning a summary for each variable.

In this case, the summary() command will return the maximum, minimum, mean, median, first and third
quartiles, as well as the number of missing values for each variable.

3.2.3 Saving Data

Use save() to write data or any object to a file in your working directory. For example,

> save(mydata, file = "mydata.RData") # Saves `mydata' to `mydata.RData'
# in your working directory.

> save.image() # Saves your entire workspace to

# the default `.RData' file.

R will also prompt you to save your workspace when you use the q() command to quit. When you start
R again, it will load the previously saved workspace. Restarting R will not, however, load previously used
packages. You must remember to load Zelig at the beginning of every R session.

Alternatively, you can recall individually saved objects from .RData files using the load() command.
For example,

> load("mydata.RData")

loads the objects saved in the mydata.RData file. You may save a data frame, a data frame and associated
functions, or other R objects to file.
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3.3 Variables

3.3.1 Classes of Variables

R variables come in several types. Certain Zelig models require dependent variables of a certain class
of variable. (These are documented under the manual pages for each model.) Use class(variable) to
determine the class of a variable or class(data$variable) for a variable within a data frame.

Types of Variables

For all types of variable (vectors), you may use the c() command to “concatenate” elements into a vector,
the : operator to generate a sequence of integer values, the seq() command to generate a sequence of
non-integer values, or the rep() function to repeat a value to a specified length. In addition, you may use
the <- operator to save variables (or any other objects) to the workspace. For example:

> logic <- c(TRUE, FALSE, TRUE, TRUE, TRUE) # Creates `logic' (5 T/F values).

> var1 <- 10:20 # All integers between 10 and 20.

> var2 <- seq(from = 5, to = 10, by = 0.5) # Sequence from 5 to 10 by

# intervals of 0.5.

> var3 <- rep(NA, length = 20) # 20 `NA' values.

> var4 <- c(rep(1, 15), rep(0, 15)) # 15 `1's followed by 15 `0's.

For the seq() command, you may alternatively specify length instead of by to create a variable with a
specific number (denoted by the length argument) of evenly spaced elements.

1. Numeric variables are real numbers and the default variable class for most dataset values. You can
perform any type of math or logical operation on numeric values. If var1 and var2 are numeric
variables, we can compute

> var3 <- log(var2) - 2*var1 # Create `var3' using math operations.

Inf (infinity), -Inf (negative infinity), NA (missing value), and NaN (not a number) are special nu-
meric values on which most math operations will fail. (Logical operations will work, however.) Use
as.numeric() to transform variables into numeric variables. Integers are a special class of numeric
variable.

2. Logical variables contain values of either TRUE or FALSE. R supports the following logical operators:
==, exactly equals; >, greater than; <, less than; >=, greater than or equals; <=, less than or equals; and
!=, not equals. The = symbol is not a logical operator. Refer to Section 3.3.2 for more detail on logical
operators. If var1 and var2 both have n observations, commands such as

> var3 <- var1 < var2

> var3 <- var1 == var2

create n TRUE/FALSE observations such that the ith observation in var3 evaluates whether the logical
statement is true for the ith value of var1 with respect to the ith value of var2. Logical variables
should usually be converted to integer values prior to analysis; use the as.integer() command.

3. Character variables are sets of text strings. Note that text strings are always enclosed in quotes to
denote that the string is a value, not an object in the workspace or an argument for a function (neither
of which take quotes). Variables of class character are not normally used in data analysis, but used as
descriptive fields. If a character variable is used in a statistical operation, it must first be transformed
into a factored variable.
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4. Factor variables may contain values consisting of either integers or character strings. Use factor() or
as.factor() to convert character or integer variables into factor variables. Factor variables separate
unique values into levels. These levels may either be ordered or unordered. In practice, this means that
including a factor variable among the explanatory variables is equivalent to creating dummy variables
for each level. In addition, some models (ordinal logit, ordinal probit, and multinomial logit), require
that the dependent variable be a factor variable.

3.3.2 Recoding Variables

Researchers spend a significant amount of time cleaning and recoding data prior to beginning their analyses.
R has several procedures to facilitate the process.

Extracting, Replacing, and Generating New Variables

While it is not difficult to recode variables, the process is prone to human error. Thus, we recommend that
before altering the data, you save your existing data frame using the procedures described in Section 3.2.3,
that you only recode one variable at a time, and that you recode the variable outside the data frame and
then return it to the data frame.

To extract the variable you wish to recode, type:

> var <- data$var1 # Copies `var1' from `data', creating `var'.

Do not sort the extracted variable or delete observations from it. If you do, the ith observation in var will
no longer match the ith observation in data.

To replace the variable or generate a new variable in the data frame, type:

> data$var1 <- var # Replace `var1' in `data' with `var'.
> data$new.var <- var # Generate `new.var' in `data' using `var'.

To remove a variable from a data frame (rather than replacing one variable with another):

> data$var1 <- NULL

Logical Operators

R has an intuitive method for recoding variables, which relies on logical operators that return statements
of TRUE and FALSE. A mathematical operator (such as ==, !=, >, >= <, and <=) takes two objects of equal
dimensions (scalars, vectors of the same length, matrices with the same number of rows and columns, or
similarly dimensioned arrays) and compares every element in the first object to its counterpart in the second
object.

• ==: checks that one variable “exactly equals” another in a list-wise manner. For example:

> x <- c(1, 2, 3, 4, 5) # Creates the object `x'.
> y <- c(2, 3, 3, 5, 1) # Creates the object `y'.
> x == y # Only the 3rd `x' exactly equals

[1] FALSE FALSE TRUE FALSE FALSE # its counterpart in `y'.

(The = symbol is not a logical operator.)

• !=: checks that one variable does not equal the other in a list-wise manner. Continuing the example:

> x != y

[1] TRUE TRUE FALSE TRUE TRUE
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• > (>=): checks whether each element in the left-hand object is greater than (or equal to) every element
in the right-hand object. Continuing the example from above:

> x > y # Only the 5th `x' is greater

[1] FALSE FALSE FALSE FALSE TRUE # than its counterpart in `y'.
> x >= y # The 3rd `x' is equal to the

[1] FALSE FALSE TRUE FALSE TRUE # 3rd `y' and becomes TRUE.

• < (<=): checks whether each element in the left-hand object is less than (or equal to) every object in
the right-hand object. Continuing the example from above:

> x < y # The elements 1, 2, and 4 of `x' are

[1] TRUE TRUE FALSE TRUE FALSE # less than their counterparts in `y'.
> x <= y # The 3rd `x' is equal to the 3rd `y'
[1] TRUE TRUE TRUE TRUE FALSE # and becomes TRUE.

For two vectors of five elements, the mathematical operators compare the first element in x to the first
element in y, the second to the second and so forth. Thus, a mathematical comparison of x and y returns
a vector of five TRUE/FALSE statements. Similarly, for two matrices with 3 rows and 20 columns each, the
mathematical operators will return a 3× 20 matrix of logical values.

There are additional logical operators which allow you to combine and compare logical statements:

• &: is the logical equivalent of “and”, and evaluates one array of logical statements against another in a
list-wise manner, returning a TRUE only if both are true in the same location. For example:

> a <- matrix(c(1:12), nrow = 3, ncol = 4) # Creates a matrix `a'.
> a

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> b <- matrix(c(12:1), nrow = 3, ncol = 4) # Creates a matrix `b'.
> b

[,1] [,2] [,3] [,4]

[1,] 12 9 6 3

[2,] 11 8 5 2

[3,] 10 7 4 1

> v1 <- a > 3 # Creates the matrix `v1' (T/F values).

> v2 <- b > 3 # Creates the matrix `v2' (T/F values).

> v1 & v2 # Checks if the (i,j) value in `v1' and

[,1] [,2] [,3] [,4] # `v2' are both TRUE. Because columns

[1,] FALSE TRUE TRUE FALSE # 2-4 of `v1' are TRUE, and columns 1-3

[2,] FALSE TRUE TRUE FALSE # of `var2' are TRUE, columns 2-3 are

[3,] FALSE TRUE TRUE FALSE # TRUE here.

> (a > 3) & (b > 3) # The same, in one step.

For more complex comparisons, parentheses may be necessary to delimit logical statements.

• |: is the logical equivalent of “or”, and evaluates in a list-wise manner whether either of the values are
TRUE. Continuing the example from above:

> (a < 3) | (b < 3) # (1,1) and (2,1) in `a' are less

[,1] [,2] [,3] [,4] # than 3, and (2,4) and (3,4) in
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[1,] TRUE FALSE FALSE FALSE # `b' are less than 3; | returns

[2,] TRUE FALSE FALSE TRUE # a matrix with `TRUE' in (1,1),

[3,] FALSE FALSE FALSE TRUE # (2,1), (2,4), and (3,4).

The && (if and only if) and || (either or) operators are used to control the command flow within functions.
The && operator returns a TRUE only if every element in the comparison statement is true; the || operator
returns a TRUE if any of the elements are true. Unlike the & and | operators, which return arrays of logical
values, the && and || operators return only one logical statement irrespective of the dimensions of the objects
under consideration. Hence, && and || are logical operators which are not appropriate for recoding variables.

Coding and Recoding Variables

R uses vectors of logical statements to indicate how a variable should be coded or recoded. For example, to
create a new variable var3 equal to 1 if var1 < var2 and 0 otherwise:

> var3 <- var1 < var2 # Creates a vector of n T/F observations.

> var3 <- as.integer(var3) # Replaces the T/F values in `var3' with

# 1's for TRUE and 0's for FALSE.

> var3 <- as.integer(var1 < var2) # Combine the two steps above into one.

In addition to generating a vector of dummy variables, you can also refer to specific values using logical
operators defined in Section 3.3.2. For example:

> v1 <- var1 == 5 # Creates a vector of T/F statements.

> var1[v1] <- 4 # For every TRUE in `v1', replaces the

# value in `var1' with a 4.

> var1[var1 == 5] <- 4 # The same, in one step.

The index (inside the square brackets) can be created with reference to other variables. For example,

> var1[var2 == var3] <- 1

replaces the ith value in var1 with a 1 when the ith value in var2 equals the ith value in var3. If you use
= in place of ==, however, you will replace all the values in var1 with 1’s because = is another way to assign
variables. Thus, the statement var2 = var3 is of course true.

Finally, you may also replace any (character, numerical, or logical) values with special values (most
commonly, NA).

> var1[var1 == "don't know"] <- NA # Replaces all "don't know"'s with NA's.

After recoding the var1 replace the old data$var1 with the recoded var1: data$var1 <- var1. You
may combine the recoding and replacement procedures into one step. For example:

> data$var1[data$var1 =< 0] <- -1

Alternatively, rather than recoding just specific values in variables, you may calculate new variables from
existing variables. For example,

> var3 <- var1 + 2 * var2

> var3 <- log(var1)

After generating the new variables, use the assignment mechanism <- to insert the new variable into the
data frame.

In addition to generating vectors of dummy variables, you may transform a vector into a matrix of
dummy indicator variables. For example, see Section 4.3 to transform a vector of k unique values (with n
observations in the complete vector) into a n× k matrix.
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Missing Data

To deal with missing values in some of your variables:

1. You may generate multiply imputed datasets using Amelia (or other programs).

2. You may omit missing values. Zelig models automatically apply list-wise deletion, so no action is
required to run a model. To obtain the total number of observations or produce other summary
statistics using the analytic dataset, you may manually omit incomplete observations. To do so, first
create a data frame containing only the variables in your analysis. For example:

> new.data <- cbind(data$dep.var, data$var1, data$var2, data$var3)

The cbind() command “column binds” variables into a data frame. (A similar command rbind()“row
binds” observations with the same number of variables into a data frame.) To omit missing values from
this new data frame:

> new.data <- na.omit(new.data)

If you perform na.omit() on the full data frame, you risk deleting observations that are fully observed
in your experimental variables, but missing values in other variables. Creating a new data frame
containing only your experimental variables usually increases the number of observations retained
after na.omit().
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Chapter 4

Programming Statements

This chapter introduces the main programming commands. These include functions, if-else statements,
for-loops, and special procedures for managing the inputs to statistical models.

4.1 Functions

Functions are either built-in or user-defined sets of encapsulated commands which may take any number of
arguments. Preface a function with the function statement and use the <- operator to assign functions to
objects in your workspace.

You may use functions to run the same procedure on different objects in your workspace. For example,

check <- function(p, q) {

result <- (p - q)/q

result

}

is a simple function with arguments p and q which calculates the difference between the ith elements of the
vector p and the ith element of the vector q as a proportion of the ith element of q, and returns the resulting
vector. For example, check(p = 10, q = 2) returns 4. You may omit the descriptors as long as you keep
the arguments in the correct order: check(10, 2) also returns 4. You may also use other objects as inputs
to the function. If again = 10 and really = 2, then check(p = again, q = really) and check(again,

really) also returns 4.
Because functions run commands as a set, you should make sure that each command in your function

works by testing each line of the function at the R prompt.

4.2 If-Statements

Use if (and optionally, else) to control the flow of R functions. For example, let x and y be scalar numerical
values:

if (x == y) { # If the logical statement in the ()'s is true,

x <- NA # then `x' is changed to `NA' (missing value).

}

else { # The `else' statement tells R what to do if

x <- x^2 # the if-statement is false.

}

As with a function, use { and } to define the set of commands associated with each if and else statement.
(If you include if statements inside functions, you may have multiple sets of nested curly braces.)
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4.3 For-Loops

Use for to repeat (loop) operations. Avoiding loops by using matrix or vector commands is usually faster
and more elegant, but loops are sometimes necessary to assign values. If you are using a loop to assign values
to a data structure, you must first initialize an empty data structure to hold the values you are assigning.

Select a data structure compatible with the type of output your loop will generate. If your loop generates
a scalar, store it in a vector (with the ith value in the vector corresponding to the the ith run of the loop).
If your loop generates vector output, store them as rows (or columns) in a matrix, where the ith row (or
column) corresponds to the ith iteration of the loop. If your output consists of matrices, stack them into an
array. For list output (such as regression output) or output that changes dimensions in each iteration, use a
list. To initialize these data structures, use:

> x <- vector() # An empty vector of any length.

> x <- list() # An empty list of any length.

The vector() and list() commands create a vector or list of any length, such that assigning x[5] <- 15

automatically creates a vector with 5 elements, the first four of which are empty values (NA). In contrast, the
matrix() and array() commands create data structures that are restricted to their original dimensions.

> x <- matrix(nrow = 5, ncol = 2) # A matrix with 5 rows and 2 columns.

> x <- array(dim = c(5,2,3)) # A 3D array of 3 stacked 5 by 2 matrices.

If you attempt to assign a value at (100, 200, 20) to either of these data structures, R will return an error
message (“subscript is out of bounds”). R does not automatically extend the dimensions of either a matrix
or an array to accommodate additional values.

Example 1: Creating a vector with a logical statement

x <- array() # Initializes an empty data structure.

for (i in 1:10) { # Loops through every value from 1 to 10, replacing

if (is.integer(i/2)) { # the even values in `x' with i+5.

x[i] <- i + 5

}

} # Enclose multiple commands in {}.

You may use for() inside or outside of functions.

Example 2: Creating dummy variables by hand You may also use a loop to create a matrix of
dummy variables to append to a data frame. For example, to generate fixed effects for each state, let’s say
that you have mydata which contains y, x1, x2, x3, and state, with state a character variable with 50
unique values. There are three ways to create dummy variables: 1) with a built-in R command; 2) with one
loop; or 3) with 2 for loops.

1. R will create dummy variables on the fly from a single variable with distinct values.

> z.out <- zelig(y ~ x1 + x2 + x3 + as.factor(state),

data = mydata, model = "ls")

This method returns k − 1 indicators for k states.

2. Alternatively, you can use a loop to create dummy variables by hand. There are two ways to do this,
but both start with the same initial commands. Using vector commands, first create an index of for
the states, and initialize a matrix to hold the dummy variables:

idx <- sort(unique(mydata$state))

dummy <- matrix(NA, nrow = nrow(mydata), ncol = length(idx))
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Now choose between the two methods.

(a) The first method is computationally inefficient, but more intuitive for users not accustomed to
vector operations. The first loop uses i as in index to loop through all the rows, and the second
loop uses j to loop through all 50 values in the vector idx, which correspond to columns 1 through
50 in the matrix dummy.

for (i in 1:nrow(mydata)) {

for (j in 1:length(idx)) {

if (mydata$state[i,j] == idx[j]) {

dummy[i,j] <- 1

}

else {

dummy[i,j] <- 0

}

}

}

Then add the new matrix of dummy variables to your data frame:

names(dummy) <- idx

mydata <- cbind(mydata, dummy)

(b) As you become more comfortable with vector operations, you can replace the double loop proce-
dure above with one loop:

for (j in 1:length(idx)) {

dummy[,j] <- as.integer(mydata$state == idx[j])

}

The single loop procedure evaluates each element in idx against the vector mydata$state. This
creates a vector of n TRUE/FALSE observations, which you may transform to 1’s and 0’s using
as.integer(). Assign the resulting vector to the appropriate column in dummy. Combine the
dummy matrix with the data frame as above to complete the procedure.

Example 3: Weighted regression with subsets Selecting the by option in zelig() partitions the data
frame and then automatically loops the specified model through each partition. Suppose that mydata is a
data frame with variables y, x1, x2, x3, and state, with state a factor variable with 50 unique values. Let’s
say that you would like to run a weighted regression where each observation is weighted by the inverse of
the standard error on x1, estimated for that observation’s state. In other words, we need to first estimate
the model for each of the 50 states, calculate 1 / se(x1j) for each state j = 1, . . . , 50, and then assign these
weights to each observation in mydata.

• Estimate the model separate for each state using the by option in zelig():

z.out <- zelig(y ~ x1 + x2 + x3, by = "state", data = mydata, model = "ls")

Now z.out is a list of 50 regression outputs.

• Extract the standard error on x1 for each of the state level regressions.

se <- array() # Initalize the empty data structure.

for (i in 1:50) { # vcov() creates the variance matrix

se[i] <- sqrt(vcov(z.out[[i]])[2,2]) # Since we have an intercept, the 2nd

} # diagonal value corresponds to x1.
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• Create the vector of weights.

wts <- 1 / se

This vector wts has 50 values that correspond to the 50 sets of state-level regression output in z.out.

• To assign the vector of weights to each observation, we need to match each observation’s state des-
ignation to the appropriate state. For simplicity, assume that the states are numbered 1 through
50.

mydata$w <- NA # Initalizing the empty variable

for (i in 1:50) {

mydata$w[mydata$state == i] <- wts[i]

}

We use mydata$state as the index (inside the square brackets) to assign values to mydata$w. Thus,
whenever state equals 5 for an observation, the loop assigns the fifth value in the vector wts to the
variable w in mydata. If we had 500 observations in mydata, we could use this method to match each
of the 500 observations to the appropriate wts.

If the states are character strings instead of integers, we can use a slightly more complex version

mydata$w <- NA

idx <- sort(unique(mydata$state))

for (i in 1:length(idx) {

mydata$w[mydata$state == idx[i]] <- wts[i]

}

• Now we can run our weighted regression:

z.wtd <- zelig(y ~ x1 + x2 + x3, weights = w, data = mydata,

model = "ls")
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Chapter 5

R Objects

In R, objects can have one or more classes, consisting of the class of the scalar value and the class of the
data structure holding the scalar value. Use the is() command to determine what an object is. If you are
already familiar with R objects, you may skip to Section 3.2.2 for loading data.

5.1 Scalar Values

R uses several classes of scalar values, from which it constructs larger data structures. R is highly class-
dependent: certain operations will only work on certain types of values or certain types of data structures.
We list the three basic types of scalar values here for your reference:

1. Numeric is the default value type for most numbers. An integer is a subset of the numeric class, and
may be used as a numeric value. You can perform any type of math or logical operation on numeric
values, including:

> log(3 * 4 * (2 + pi)) # Note that pi is a built-in constant,

[1] 4.122270 # and log() the natural log function.

> 2 > 3 # Basic logical operations, including >,

[1] FALSE # <, >= (greater than or equals),

# <= (less than or equals), == (exactly

# equals), and != (not equals).

> 3 >= 2 && 100 == 1000/10 # Advanced logical operations, including

[1] TRUE # & (and), && (if and only if), | (or),

# and || (either or).

Note that Inf (infinity), -Inf (negative infinity), NA (missing value), and NaN (not a number) are special
numeric values on which most math operations will fail. (Logical operations will work, however.)

2. Logical operations create logical values of either TRUE or FALSE. To convert logical values to numerical
values, use the as.integer() command:

> as.integer(TRUE)

[1] 1

> as.integer(FALSE)

[1] 0

3. Character values are text strings. For example,
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> text <- "supercalafragilisticxpaladocious"

> text

[1] "supercalafragilisticxpaladocious"

assigns the text string on the right-hand side of the <- to the named object in your workspace. Text
strings are primarily used with data frames, described in the next section. R always returns character
strings in quotes.

5.2 Data Structures

5.2.1 Arrays

Arrays are data structures that consist of only one type of scalar value (e.g., a vector of character strings, or
a matrix of numeric values). The most common versions, one-dimensional and two-dimensional arrays, are
known as vectors and matrices, respectively.

Ways to create arrays

1. Common ways to create vectors (or one-dimensional arrays) include:

> a <- c(3, 7, 9, 11) # Concatenates numeric values into a vector

> a <- c("a", "b", "c") # Concatenates character strings into a vector

> a <- 1:5 # Creates a vector of integers from 1 to 5 inclusive

> a <- rep(1, times = 5) # Creates a vector of 5 repeated `1's

To manipulate a vector:

> a[10] # Extracts the 10th value from the vector `a'
> a[5] <- 3.14 # Inserts 3.14 as the 5th value in the vector `a'
> a[5:7] <- c(2, 4, 7) # Replaces the 5th through 7th values with 2, 4, and 7

Unlike larger arrays, vectors can be extended without first creating another vector of the correct length.
Hence,

> a <- c(4, 6, 8)

> a[5] <- 9 # Inserts a 9 in the 5th position of the vector,

# automatically inserting an `NA' values position 4

2. A factor vector is a special type of vector that allows users to create j indicator variables in one
vector, rather than using j dummy variables (as in Stata or SPSS). R creates this special class of
vector from a pre-existing vector x using the factor() command, which separates x into levels based
on the discrete values observed in x. These values may be either integer value or character strings. For
example,

> x <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 9, 9, 9, 9)

> factor(x)

[1] 1 1 1 1 1 2 2 2 2 9 9 9 9

Levels: 1 2 9

By default, factor() creates unordered factors, which are treated as discrete, rather than ordered,
levels. Add the optional argument ordered = TRUE to order the factors in the vector:
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> x <- c("like", "dislike", "hate", "like", "don't know", "like", "dislike")

> factor(x, levels = c("hate", "dislike", "like", "don't know"),

+ ordered = TRUE)

[1] like dislike hate like don't know like dislike

Levels: hate < dislike < like < don't know

The factor() command orders the levels according to the order in the optional argument levels. If
you omit the levels command, R will order the values as they occur in the vector. Thus, omitting the
levels argument sorts the levels as like < dislike < hate < don’t know in the example above. If
you omit one or more of the levels in the list of levels, R returns levels values of NA for the missing
level(s):

> factor(x, levels = c("hate", "dislike", "like"), ordered = TRUE)

[1] like dislike hate like <NA> like dislike

Levels: hate < dislike < like

Use factored vectors within data frames for plotting (see Section 6.1), to set the values of the explanatory
variables using setx.

3. Build matrices (or two-dimensional arrays) from vectors (one-dimensional arrays). You can create a
matrix in two ways:

(a) From a vector: Use the command matrix(vector, nrow = k, ncol = n) to create a k×n matrix
from the vector by filling in the columns from left to right. For example,

> matrix(c(1,2,3,4,5,6), nrow = 2, ncol = 3)

[,1] [,2] [,3] # Note that when assigning a vector to a

[1,] 1 3 5 # matrix, none of the rows or columns

[2,] 2 4 6 # have names.

(b) From two or more vectors of length k: Use cbind() to combine n vectors vertically to form a
k×n matrix, or rbind() to combine n vectors horizontally to form a n× k matrix. For example:

> x <- c(11, 12, 13) # Creates a vector `x' of 3 values.

> y <- c(55, 33, 12) # Creates another vector `y' of 3 values.

> rbind(x, y) # Creates a 2 x 3 matrix. Note that row

[,1] [,2] [,3] # 1 is named x and row 2 is named y,

x 11 12 13 # according to the order in which the

y 55 33 12 # arguments were passed to rbind().

> cbind(x, y) # Creates a 3 x 2 matrix. Note that the

x y # columns are named according to the

[1,] 11 55 # order in which they were passed to

[2,] 12 33 # cbind().

[3,] 13 12

R supports a variety of matrix functions, including: det(), which returns the matrix’s determinant;
t(), which transposes the matrix; solve(), which inverts the the matrix; and %*%, which multiplies two
matricies. In addition, the dim() command returns the dimensions of your matrix. As with vectors,
square brackets extract specific values from a matrix and the assignment mechanism <- replaces values.
For example:

> loo[,3] # Extracts the third column of loo.

> loo[1,] # Extracts the first row of loo.

> loo[1,3] <- 13 # Inserts 13 as the value for row 1, column 3.

> loo[1,] <- c(2,2,3) # Replaces the first row of loo.
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If you encounter problems replacing rows or columns, make sure that the dims() of the vector matches
the dims() of the matrix you are trying to replace.

4. An n-dimensional array is a set of stacked matrices of identical dimensions. For example, you may
create a three dimensional array with dimensions (x, y, z) by stacking z matrices each with x rows and
y columns.

> a <- matrix(8, 2, 3) # Creates a 2 x 3 matrix populated with 8's.
> b <- matrix(9, 2, 3) # Creates a 2 x 3 matrix populated with 9's.
> array(c(a, b), c(2, 3, 2)) # Creates a 2 x 3 x 2 array with the first

, , 1 # level [,,1] populated with matrix a (8's),
# and the second level [,,2] populated

[,1] [,2] [,3] # with matrix b (9's).
[1,] 8 8 8

[2,] 8 8 8 # Use square brackets to extract values. For

# example, [1, 2, 2] extracts the second

, , 2 # value in the first row of the second level.

# You may also use the <- operator to

[,1] [,2] [,3] # replace values.

[1,] 9 9 9

[2,] 9 9 9

If an array is a one-dimensional vector or two-dimensional matrix, R will treat the array using the
more specific method.

Three functions especially helpful for arrays:

• is() returns both the type of scalar value that populates the array, as well as the specific type of array
(vector, matrix, or array more generally).

• dims() returns the size of an array, where

> dims(b)

[1] 33 5

indicates that the array is two-dimensional (a matrix), and has 33 rows and 5 columns.

• The single bracket [ ] indicates specific values in the array. Use commas to indicate the index of the
specific values you would like to pull out or replace:

> dims(a)

[1] 14

> a[10] # Pull out the 10th value in the vector `a'
> dims(b)

[1] 33 5

> b[1:12, ] # Pull out the first 12 rows of `b'
> c[1, 2] # Pull out the value in the first row, second column of `c'
> dims(d)

[1] 1000 4 5

> d[ , 3, 1] # Pulls out a vector of 1,000 values
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5.2.2 Lists

Unlike arrays, which contain only one type of scalar value, lists are flexible data structures that can contain
heterogeneous value types and heterogeneous data structures. Lists are so flexible that one list can contain
another list. For example, the list output can contain coef, a vector of regression coefficients; variance,
the variance-covariance matrix; and another list terms that describes the data using character strings. Use
the names() function to view the named elements in a list, and to extract a named element, use

> names(output)

[1] coefficients variance terms

> output$coefficients

For lists where the elements are not named, use double square brackets [[ ]] to extract elements:

> L[[4]] # Extracts the 4th element from the list `L'
> L[[4]] <- b # Replaces the 4th element of the list `L' with a matrix `b'

Like vectors, lists are flexible data structures that can be extended without first creating another list of
with the correct number of elements:

> L <- list() # Creates an empty list

> L$coefficients <- c(1, 4, 6, 8) # Inserts a vector into the list, and

# names that vector `coefficients'
# within the list

> L[[4]] <- c(1, 4, 6, 8) # Inserts the vector into the 4th position

# in the list. If this list doesn't
# already have 4 elements, the empty

# elements will be `NULL' values

Alternatively, you can easily create a list using objects that already exist in your workspace:

> L <- list(coefficients = k, variance = v) # Where `k' is a vector and

# `v' is a matrix

5.2.3 Data Frames

A data frame (or data set) is a special type of list in which each variable is constrained to have the same
number of observations. A data frame may contain variables of different types (numeric, integer, logical,
character, and factor), so long as each variable has the same number of observations.

Thus, a data frame can use both matrix commands and list commands to manipulate variables and
observations.

> dat[1:10,] # Extracts observations 1-10 and all associated variables

> dat[dat$grp == 1,] # Extracts all observations that belong to group 1

> group <- dat$grp # Saves the variable `grp' as a vector `group' in

# the workspace, not in the data frame

> var4 <- dat[[4]] # Saves the 4th variable as a `var4' in the workspace

For a comprehensive introduction to data frames and recoding data, see Section 3.2.2.

5.2.4 Identifying Objects and Data Structures

Each data structure has several attributes which describe it. Although these attributes are normally invisible
to users (e.g., not printed to the screen when one types the name of the object), there are several helpful
functions that display particular attributes:

• For arrays, dims() returns the size of each dimension.
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• For arrays, is() returns the scalar value type and specific type of array (vector, matrix, array). For
more complex data structures, is() returns the default methods (classes) for that object.

• For lists and data frames, names() returns the variable names, and str() returns the variable names
and a short description of each element.

For almost all data types, you may use summary() to get summary statistics.
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Chapter 6

Graphing Commands

R, and thus Zelig, can produce exceptionally beautiful plots. Many built-in plotting functions exist, including
scatter plots, line charts, histograms, bar charts, pie charts, ternary diagrams, contour plots, and a variety of
three-dimensional graphs. If you desire, you can exercise a high degree of control to generate just the right
graphic. Zelig includes several default plots for one-observation simulations for each model. To view these
plots on-screen, simply type plot(s.out), where s.out is the output from sim(). Depending on the model
chosen, plot() will return different plots.

If you wish to create your own plots, this section reviews the most basic procedures for creating and
saving two-dimensional plots. R plots material in two steps:

1. You must call an output device (discussed in Section 6.3), select a type of plot, draw a plotting region,
draw axes, and plot the given data. At this stage, you may also define axes labels, the plot title, and
colors for the plotted data. Step one is described in Section 6.1 below.

2. Optionally, you may add points, lines, text, or a legend to the existing plot. These commands are
described in Section 6.2.

6.1 Drawing Plots

The most generic plotting command is plot(), which automatically recognizes the type of R object(s) you
are trying to plot and selects the best type of plot. The most common graphs returned by plot() are as
follows:

1. If X is a variable of length n, plot(X) returns a scatter plot of (xi, i) for i = 1, . . . n. If X is unsorted,
this procedure produces a messy graph. Use plot(sort(X)) to arrange the plotted values of (xi, i)
from smallest to largest.

2. With two numeric vectors X and Y, both of length n, plot(X, Y) plots a scatter plot of each point
(xi, yi) for i = 1, . . . n. Alternatively, if Z is an object with two vectors, plot(Z) also creates a scatter
plot.

Optional arguments specific to plot include:

• main creates a title for the graph, and xlab and ylab label the x and y axes, respectively. For example,

plot(x, y, main = "My Lovely Plot", xlab = "Explanatory Variable",

ylab = "Dependent Variable")

• type controls the type of plot you request. The default is plot(x, y, type = "p"), but you may
choose among the following types:
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"p" points
"l" lines
"b" both points and lines
"c" lines drawn up to but not including the points
"h" histogram
"s" a step function
"n" a blank plotting region ( with the axes specified)

• If you choose type = "p", R plots open circles by default. You can change the type of point by
specifying the pch argument. For example, plot(x, y, type = "p", pch = 19) creates a scatter-
plot of filled circles. Other options for pch include:

19 solid circle (a disk)
20 smaller solid circle
21 circle
22 square
23 diamond
24 triangle pointed up
25 triangle pointed down

In addition, you can specify your own symbols by using, for example, pch = "*" or pch = ".".

• If you choose type = "l", R plots solid lines by default. Use the optional lty argument to set the line
type. For example, plot(x, y, type = "l", lty = "dashed") plots a dashed line. Other options
are dotted, dotdash, longdash, and twodash.

• col sets the color of the points, lines, or bars. For example, plot(x, y, type = "b", pch = 20,

lty = "dotted", col = "violet") plots small circles connected by a dotted line, both of which are
violet. (The axes and labels remain black.) Use colors() to see the full list of available colors.

• xlim and ylim set the limits to the x-axis and y-axis. For example, plot(x, y, xlim = c(0, 25),

ylim = c(-15, 5)) sets range of the x-axis to [0, 25] and the range of the y-axis to [−15, 5].

For additional plotting options, refer to help(par).

6.2 Adding Points, Lines, and Legends to Existing Plots

Once you have created a plot, you can add points, lines, text, or a legend. To place each of these elements, R
uses coordinates defined in terms of the x-axes and y-axes of the plot area, not coordinates defined in terms
of the the plotting window or device. For example, if your plot has an x-axis with values between [0, 100],
and a y-axis with values between [50, 75], you may add a point at (55, 55).

• points() plots one or more sets of points. Use pch with points to add points to an existing plot. For
example, points(P, Q, pch = ".", col = "forest green") plots each (pi, qi) as tiny green dots.

• lines() joins the specified points with line segments. The arguments col and lty may also be used.
For example, lines(X, Y, col = "blue", lty = "dotted") draws a blue dotted line from each set
of points (xi, yi) to the next. Alternatively, lines also takes command output which specifies (x, y)
coordinates. For example, density(Z) creates a vector of x and a vector of y, and plot(density(Z))

draws the kernel density function.
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• text() adds a character string at the specified set of (x, y) coordinates. For example, text(5, 5,

labels = "Key Point") adds the label “Key Point” at the plot location (5, 5). You may also choose
the font using the font option, the size of the font relative to the axis labels using the cex option, and
choose a color using the col option. The full list of options may be accessed using help(text).

• legend() places a legend at a specified set of (x, y) coordinates. Type demo(vertci) to see an example
for legend().

6.3 Saving Graphs to Files

By default, R displays graphs in a window on your screen. To save R plots to file (to include them in a
paper, for example), preface your plotting commands with:

> ps.options(family = c("Times"), pointsize = 12)

> postscript(file = "mygraph.eps", horizontal = FALSE, paper = "special",

width = 6.25, height = 4)

where the ps.options() command sets the font type and size in the output file, and the postscript

command allows you to specify the name of the file as well as several additional options. Using paper =

special allows you to specify the width and height of the encapsulated postscript region in inches (6.25
inches long and 4 inches high, in this case), and the statement horizontal = FALSE suppresses R’s default
landscape orientation. Alternatively, you may use pdf() instead of postscript(). If you wish to select
postscript options for .pdf output, you may do so using options in pdf(). For example:

> pdf(file = "mygraph.pdf", width = 6.25, height = 4, family = "Times",

+ pointsize = 12)

At the end of every plot, you should close your output device. The command dev.off() stops writing
and saves the .eps or .pdf file to your working directory. If you forget to close the file, you will write all
subsequent plots to the same file, overwriting previous plots. You may also use dev.off() to close on-screen
plot windows.

To write multiple plots to the same file, you can use the following options:

• For plots on separate pages in the same .pdf document, use

> pdf(file = "mygraph.pdf", width = 6.25, height = 4, family = "Times",

+ pointsize = 12, onefile = TRUE)

• For multiple plots on one page, initialize either a .pdf or .eps file, then (before any plotting commands)
type:

par(mfrow = c(2, 4))

This creates a grid that has two rows and four columns. Your plot statements will populate the grid
going across the first row, then the second row, from left to right.
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6.4 Examples

6.4.1 Descriptive Plots: Box-plots
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Using the sample turnout data set included with Zelig, the following commands will produce the graph
above.

> library(Zelig) # Loads the Zelig package.

> data (turnout) # Loads the sample data.

> boxplot(income ~ educate, # Creates a boxplot with income

+ data = turnout, col = "grey", pch = ".", # as a function of education.

+ main = "Income as a Function of Years of Education",

+ xlab = "Education in Years", ylab = "Income in \$10,000s")
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6.4.2 Density Plots: A Histogram

Histograms are easy ways to evaluate the density of a quantity of interest.
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Here’s the code to create this graph:

> library(Zelig) # Loads the Zelig package.

> data(turnout) # Loads the sample data set.

> truehist(turnout$income, col = "wheat1", # Calls the main plot, with

+ xlab = "Annual Income in $10,000s", # options.

+ main = "Histogram of Income")

> lines(density(turnout$income)) # Adds the kernel density line.
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6.4.3 Advanced Examples

The examples above are simple examples which only skim the surface of R’s plotting potential. We include
more advanced, model-specific plots in the Zelig demo scripts, and have created functions that automate
some of these plots, including:

1. Ternary Diagrams describe the predicted probability of a categorical dependent variable that has
three observed outcomes. You may choose to use this plot with the multinomial logit, the ordinal logit,
or the ordinal probit models (Katz and King, 1999)..
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2. ROC Plots summarize how well models for binary dependent variables (logit and probit) fit the data.
The ROC plot evaluates the fraction of 0’s and 1’s correctly predicted for every possible threshold
value at which the continuous Prob(Y = 1) may be realized as a dichotomous prediction. The closer
the ROC curve is to the upper right corner of the plot, the better the fit of the model specification
(King and Zeng, 2002b). See Section 3 for the sample code, and type demo(roc) at the R prompt to
run the example.
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3. Vertical Confidence Intervals may be used for almost any model, and describe simulated confidence
intervals for any quantity of interest while allowing one of the explanatory variables to vary over a given
range of values (King, Tomz and Wittenberg, 2000). Type demo(vertci) at the R prompt to run the
example, and help.zelig(plot.ci) for the manual page.
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Part III

Zelig User Commands
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Chapter 7

Zelig Commands

7.1 Zelig Commands

7.1.1 Quick Overview

For any statistical model, Zelig does its work with a combination of three commands.

Figure 7.1: Main Zelig commands (solid arrows) and some options (dashed arrows)

Imputation

((QQQQQQ Matching

vvm m m m m m

Validation oo _____ ?> =<89 :;zelig()

��

//_____ summary()

?> =<89 :;setx() //_____

��

whatif()

?> =<89 :;sim()

((QQQQQQQ

vvm m m m m m m

summary() plot()

1. Use zelig() to run the chosen statistical model on a given data set, with a specific set of variables. For
standard likelihood models, for example, this step estimates the coefficients, other model parameters,
and a variance-covariance matrix. In addition, you may choose from a variety of options:

• Pre-process data: Prior to calling zelig(), you may choose from a variety of data pre-processing
commands (matching or multiple imputation, for example) to make your statistical inferences
more accurate.

• Summarize model: After calling zelig(), you may summarize the fitted model output using
summary().
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• Validate model: After calling zelig(), you may choose to validate the fitted model. This can be
done, for example, by using cross-validation procedures and diagnostics tools.

2. Use setx() to set each of the explanatory variables to chosen (actual or counterfactual) values in
preparation for calculating quantities of interest. After calling setx(), you may use WhatIf to evalu-
ate these choices by determining whether they involve interpolation (i.e., are inside the convex hull of
the observed data) or extrapolation, as well as how far these counterfactuals are from the data. Coun-
terfactuals chosen in setx() that involve extrapolation far from the data can generate considerably
more model dependence (see [30], [31], [56]).

3. Use sim() to draw simulations of your quantity of interest (such as a predicted value, predicted
probability, risk ratio, or first difference) from the model. (These simulations may be drawn using an
asymptotic normal approximation (the default), bootstrapping, or other methods when available, such
as directly from a Bayesian posterior.) After calling sim(), use any of the following to summarize the
simulations:

• The summary() function gives a numerical display. For multiple setx() values, summary() lets
you summarize simulations by choosing one or a subset of observations.

• If the setx() values consist of only one observation, plot() produces density plots for each
quantity of interest.

Whenever possible, we use z.out as the zelig() output object, x.out as the setx() output object, and
s.out as the sim() output object, but you may choose other names.

7.1.2 Examples

• Use the turnout data set included with Zelig to estimate a logit model of an individual’s probability of
voting as function of race and age. Simulate the predicted probability of voting for a white individual,
with age held at its mean:

> data(turnout)

> z.out <- zelig(vote ~ race + age, model = "logit", data = turnout)

> x.out <- setx(z.out, race = "white")

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

• Compute a first difference and risk ratio, changing education from 12 to 16 years, with other variables
held at their means in the data:

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> x.low <- setx(z.out, educate = 12)

> x.high <- setx(z.out, educate = 16)

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out) # Numerical summary.

> plot(s.out) # Graphical summary.

• Calculate expected values for every observation in your data set:

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> x.out <- setx(z.out, fn = NULL)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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• Use five multiply imputed data sets from [55] in an ordered logit model:

> data(immi1, immi2, immi3, immi4, immi5)

> z.out <- zelig(as.factor(ipip) ~ wage1992 + prtyid + ideol,

model = "ologit",

data = mi(immi1, immi2, immi3, immi4, immi5))

• Use the nearest propensity score matching via MatchIt package, and then calculate the conditional
average treatment effect of the job training program based on the linear regression model:

> library(MatchIt)

> data(lalonde)

> m.out <- matchit(treat ~ re74 + re75 + educ + black + hispan + age,

data = lalonde, method = "nearest")

> m.data <- match.data(m.out)

> z.out <- zelig(re78 ~ treat + distance + re74 + re75 + educ + black +

hispan + age, data = m.data, model = "ls")

> x.out0 <- setx(z.out, fn = NULL, treat = 0)

> x.out1 <- setx(z.out, fn = NULL, treat = 1)

> s.out <- sim(z.out, x=x.out0, x1=x.out1)

> summary(s.out)

• Validate the fitted model using the leave-one-out cross validation procedure and calculating the average
squared prediction error via boot package. For example:

> library(boot)

> data(turnout)

> z.out <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> cv.out <- cv.glm(z.out, data = turnout)

> print(cv.out$delta)

7.1.3 Details

1. z.out <- zelig(formula, model, data, by = NULL, ...)

The zelig() command estimates a selected statistical model given the specified data. You may name
the output object (z.out above) anything you desire. You must include three required arguments, in
the following order:

(a) formula takes the form y ~ x1 + x2, where y is the dependent variable and x1 and x2 are the
explanatory variables, and y, x1, and x2 are contained in the same dataset. The + symbol means
“inclusion” not “addition.” You may include interaction terms in the form of x1*x2 without having
to compute them in prior steps or include the main effects separately. For example, R treats the
formula y ~ x1*x2 as y ~ x1 + x2 + x1*x2. To prevent R from automatically including the
separate main effect terms, use the I() function, thus: y ~ I(x1 * x2).

(b) model lets you choose which statistical model to run. You must put the name of the model in
quotation marks, in the form model = "ls", for example. See Section 7.2 for a list of currently
supported models.

(c) data specifies the data frame containing the variables called in the formula, in the form data =

mydata. Alternatively, you may input multiply imputed datasets in the form data = mi(data1,

data2, ...).1 If you are working with matched data created using MatchIt, you may create a

1Multiple imputation is a method of dealing with missing values in your data which is more powerful than the usual list-wise
deletion approach. You can create multiply imputed datasets with a program such as Amelia; see King, Honaker, Joseph,
Scheve (2000).
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data frame within the zelig() statement by using data = match.data(...). In all cases, the
data frame or MatchIt object must have been previously loaded into the working memory.

(d) by (an optional argument which is by default NULL) allows you to choose a factor variable (see
Section 2) in the data frame as a subsetting variable. For each of the unique strata defined in the
by variable, zelig() does a separate run of the specified model. The variable chosen should not
be in the formula, because there will be no variance in the by variable in the subsets. If you have
one data set for all 191 countries in the UN, for example, you may use the by option to run the
same model 191 times, once on each country, all with a single zelig() statement. You may also
use the by option to run models on MatchIt subclasses.

(e) The output object, z.out, contains all of the options chosen, including the name of the data set.
Because data sets may be large, Zelig does not store the full data set, but only the name of the
dataset. Every time you use a Zelig function, it looks for the dataset with the appropriate name
in working memory. (Thus, it is critical that you do not change the name of your data set, or
perform any additional operations on your selected variables between calling zelig() and setx(),
or between setx() and sim().)

(f) If you would like to view the regression output at this intermediate step, type summary(z.out)

to return the coefficients, standard errors, t-statistics and p-values. We recommend instead that
you calculate quantities of interest; creating z.out is only the first of three steps in this task.

2. x.out <- setx(z.out, fn = list(numeric = mean, ordered = median, others = mode), data

= NULL, cond = FALSE, ...)

The setx() command lets you choose values for the explanatory variables, with which sim() will
simulate quantities of interest. There are two types of setx() procedures:

• You may perform the usual unconditional prediction (by default, cond = FALSE), by explicitly
choosing the values of each explanatory variable yourself or letting setx() compute them, either
from the data used to create z.out or from a new data set specified in the optional data argument.
You may also compute predictions for all observed values of your explanatory variables using fn

= NULL.

• Alternatively, for advanced uses, you may perform conditional prediction (cond = TRUE), which
predicts certain quantities of interest by conditioning on the observed value of the dependent vari-
able. In a simple linear regression model, this procedure is not particularly interesting, since the
conditional prediction is merely the observed value of the dependent variable for that observation.
However, conditional prediction is extremely useful for other models and methods, including the
following:

– In a matched sampling design, the sample average treatment effect for the treated can be
estimated by computing the difference between the observed dependent variable for the treated
group and their expected or predicted values of the dependent variable under no treatment
[7].

– With censored data, conditional prediction will ensure that all predicted values are greater
than the censored observed values [25].

– In ecological inference models, conditional prediction guarantees that the predicted values are
on the tomography line and thus restricted to the known bounds [24, 1].

– The conditional prediction in many linear random effects (or Bayesian hierarchical) models
is a weighted average of the unconditional prediction and the value of the dependent variable
for that observation, with the weight being an estimable function of the accuracy of the
unconditional prediction [see 6]. When the unconditional prediction is highly certain, the
weight on the value of the dependent variable for this observation is very small, hence reducing
inefficiency; when the unconditional prediction is highly uncertain, the relative weight on the
unconditional prediction is very small, hence reducing bias. Although the simple weighted
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average expression no longer holds in nonlinear models, the general logic still holds and the
mean square error of the measurement is typically reduced [see 27].

In these and other models, conditioning on the observed value of the dependent variable can vastly
increase the accuracy of prediction and measurement.

The setx() arguments for unconditional prediction are as follows:

(a) z.out, the zelig() output object, must be included first.

(b) You can set particular explanatory variables to specified values. For example:

> z.out <- zelig(vote ~ age + race, model = "logit", data = turnout)

> x.out <- setx(z.out, age = 30)

setx() sets the variables not explicitly listed to their mean if numeric, and their median if ordered
factors, and their mode if unordered factors, logical values, or character strings. Alternatively,
you may specify one explanatory variable as a range of values, creating one observation for every
unique value in the range of values:2

> x.out <- setx(z.out, age = 18:95)

This creates 78 observations with with age set to 18 in the first observation, 19 in the second
observation, up to 95 in the 78th observation. The other variables are set to their default values,
but this may be changed by setting fn, as described next.

(c) Optionally, fn is a list which lets you to choose a different function to apply to explanatory
variables of class

• numeric, which is mean by default,

• ordered factor, which is median by default, and

• other variables, which consist of logical variables, character string, and unordered factors,
and are set to their mode by default.

While any function may be applied to numeric variables, mean will default to median for ordered
factors, and mode is the only available option for other types of variables. In the special case, fn
= NULL, setx() returns all of the observations.

(d) You cannot perform other math operations within the fn argument, but can use the output from
one call of setx to create new values for the explanatory variables. For example, to set the
explanatory variables to one standard deviation below their mean:

> X.sd <- setx(z.out, fn = list(numeric = sd))

> X.mean <- setx(z.out, fn = list(numeric = mean))

> x.out <- X.mean - X.sd

(e) Optionally, data identifies a new data frame (rather than the one used to create z.out) from
which the setx() values are calculated. You can use this argument to set values of the explanatory
variables for hold-out or out-of-sample fit tests.

(f) The cond is always FALSE for unconditional prediction.

If you wish to calculate risk ratios or first differences, call setx() a second time to create an additional
set of the values for the explanatory variables. For example, continuing from the example above, you
may create an alternative set of explanatory variables values one standard deviation above their mean:

> x.alt <- X.mean + X.sd

The required arguments for conditional prediction are as follows:

2If you allow more than one variable to vary at a time, you risk confounding the predictive effect of the variables in question.
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(a) z.out, the zelig() output object, must be included first.

(b) fn, which equals NULL to indicate that all of the observations are selected. You may only perform
conditional inference on actual observations, not the mean of observations or any other function
applied to the observations. Thus, if fn is missing, but cond = TRUE, setx() coerces fn = NULL.

(c) data, the data for conditional prediction.

(d) cond, which equals TRUE for conditional prediction.

Additional arguments, such as any of the variable names, are ignored in conditional prediction since
the actual values of that observation are used.

3. s.out <- sim(z.out, x = x.out, x1 = NULL, num = c(1000, 100), bootstrap = FALSE, bootfn

= NULL, ...)

The sim() command simulates quantities of interest given the output objects from zelig() and setx().
This procedure uses only the assumptions of the statistical model. The sim() command performs either
unconditional or conditional prediction depending on the options chosen in setx().

The arguments are as follows for unconditional prediction:

(a) z.out, the model output from zelig().

(b) x, the output from the setx() procedure performed on the model output.

(c) Optionally, you may calculate first differences by specifying x1, an additional setx() object. For
example, using the x.out and x.alt, you may generate first differences using:

> s.out <- sim(z.out, x = x.out, x1 = x.alt)

(d) By default, the number of simulations, num, equals 1000 (or 100 simulations if bootstrap is se-
lected), but this may be decreased to increase computational speed, or increased for additional
precision.

(e) Zelig simulates parameters from classical maximum likelihood models using asymptotic normal
approximation to the log-likelihood. This is the same assumption as used for frequentist hypothesis
testing (which is of course equivalent to the asymptotic approximation of a Bayesian posterior
with improper uniform priors). See King, Tomz, and Wittenberg (2000). For Bayesian models,
Zelig simulates quantities of interest from the posterior density, whenever possible. For robust
Bayesian models, simulations are drawn from the identified class of Bayesian posteriors.

(f) Alternatively, you may set bootstrap = TRUE to simulate parameters using bootstrapped data
sets. If your dataset is large, bootstrap procedures will usually be more memory intensive and time-
consuming than simulation using asymptotic normal approximation. The type of bootstrapping
(including the sampling method) is determined by the optional argument bootfn, described below.

(g) If bootstrap = TRUE is selected, sim() will bootstrap parameters using the default bootfn, which
re-samples from the data frame with replacement to create a sampled data frame of the same
number of observations, and then re-runs zelig() (inside sim()) to create one set of bootstrapped
parameters. Alternatively, you may create a function outside the sim() procedure to handle
different bootstrap procedures. Please consult help(boot) for more details.3

For conditional prediction, sim() takes only two required arguments:

(a) z.out, the model output from zelig().

(b) x, the conditional output from setx().

3If you choose to create your own bootfn, it must include the the following three arguments: data, the original data
frame; one of the sampling methods described in help(boot); and object, the original zelig() output object. The alternative
bootstrapping function must sample the data, fit the model, and extract the model-specific parameters.
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(c) Optionally, for duration models, cond.data, which is the data argument from setx(). For models
for duration dependent variables (see Section 6), sim() must impute the uncensored dependent
variables before calculating the average treatment effect. Inputting the cond.data allows sim()

to generate appropriate values.

Additional arguments are ignored or generate error messages.

Presenting Results

1. Use summary(s.out) to print a summary of your simulated quantities. You may specify the number
of significant digits as:

> print(summary(s.out), digits = 2)

2. Alternatively, you can plot your results using plot(s.out).

3. You can also use names(s.out) to see the names and a description of the elements in this object and
the $ operator to extract particular results. For most models, these are: s.out$qi$pr (for predicted
values), s.out$qi$ev (for expected values), and s.out$qi$fd (for first differences in expected values).
For the logit, probit, multinomial logit, ordinal logit, and ordinal probit models, quantities of interest
also include s.out$qi$rr (the risk ratio).

7.2 Supported Models

We list here all models implemented in Zelig, organized by the nature of the dependent variable(s) to be
predicted, explained, or described.

1. Continuous Unbounded dependent variables can take any real value in the range (−∞,∞). While
most of these models take a continuous dependent variable, Bayesian factor analysis takes multiple
continuous dependent variables.

(a) "ls": The linear least-squares (see Section 14.1) calculates the coefficients that minimize the sum
of squared residuals. This is the usual method of computing linear regression coefficients, and
returns unbiased estimates of β and σ2 (conditional on the specified model). This model is found
in the Zelig core package.

(b) "normal": The Normal (see Section 16.1) model computes the maximum-likelihood estimator for
a Normal stochastic component and linear systematic component. The coefficients are identical
to ls, but the maximum likelihood estimator for σ2 is consistent but biased. This models is found
in the Zelig core package.

2. Dichotomous dependent variables consist of two discrete values, usually (0, 1).

(a) "logit": Logistic regression (see Section 13.1) specifies Pr(Y = 1) to be a(n inverse) logistic
transformation of a linear function of a set of explanatory variables. This model is found in the
Zelig core package. This models is found in the Zelig core package.

(b) "probit": Probit regression (see Section 18.1) Specifies Pr(Y = 1) to be a(n inverse) CDF normal
transformation as a linear function of a set of explanatory variables. This models is found in the
Zelig core package. This model is found in the Zelig core package.

(c) "blogit": The bivariate logistic model models i Pr(Yi1 = y1, Yi2 = y2) for (y1, y2) = (0, 0), (0, 1), (1, 0), (1, 1)
according to a bivariate logistic density. This model is found in the ZeligMultivariate package.

(d) "bprobit": The bivariate probit model models Pr(Yi1 = y1, Yi2 = y2) for (y1, y2) = (0, 0), (0, 1), (1, 0), (1, 1)
according to a bivariate normal density. This model is found in the ZeligMultivariate package.
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3. Ordinal are used to model ordered, discrete dependent variables. The values of the outcome variables
(such as kill, punch, tap, bump) are ordered, but the distance between any two successive categories
is not known exactly. Each dependent variable may be thought of as linear, with one continuous,
unobserved dependent variable observed through a mechanism that only returns the ordinal choice.

(a) "ologit": The ordinal logistic model (see Section 28.1) specifies the stochastic component of
the unobserved variable to be a standard logistic distribution. This model is found in the
ZeligOrdinal package.

(b) "oprobit": The ordinal probit distribution (see Section 29.1) specifies the stochastic component
of the unobserved variable to be standardized normal. This model is found in the ZeligOrdinal

package.

4. Multinomial dependent variables are unordered, discrete categorical responses. For example, you
could model an individual’s choice among brands of orange juice or among candidates in an election.

(a) "mlogit": The multinomial logistic model (see specifies categorical responses distributed accord-
ing to the multinomial stochastic component and logistic systematic component. This model is
found in the ZeligMultinomial package.

5. Count dependent variables are non-negative integer values, such as the number of presidential vetoes
or the number of photons that hit a detector.

(a) "poisson": The Poisson model (see Section 17.1) specifies the expected number of events that
occur in a given observation period to be an exponential function of the explanatory variables.
The Poisson stochastic component has the property that, λ = E(Yi|Xi) = V(Yi|Xi). This model
is found in the Zelig core package.

(b) "negbin": The negative binomial model (see Section 15) has the same systematic component as
the Poisson, but allows event counts to be over-dispersed, such that V(Yi|Xi) > E(Yi|Xi). This
model is found in the Zelig core package.

6. Continuous Bounded dependent variables that are continuous only over a certain range, usually
(0,∞). In addition, some models (exponential, lognormal, and Weibull) are also censored for values
greater than some censoring point, such that the dependent variable has some units fully observed and
others that are only partially observed (censored).

(a) "gamma": The Gamma model (see Section ??) for positively-valued, continuous dependent vari-
ables that are fully observed (no censoring). This model is found in the Zelig core package.

7. Mixed dependent variables include models that take more than one dependent variable, where the
dependent variables come from two or more of categories above. (They do not need to be of a homo-
geneous type.)

(a) The Bayesian mixed factor analysis model, in contrast to the Bayesian factor analysis model and
ordinal factor analysis model, can model both types of dependent variables as a function of latent
explanatory variables.

8. Ecological inference models estimate unobserved internal cell values given contingency tables with
observed row and column marginals.
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7.3 Replication Procedures

A large part of any statistical analysis is documenting your work such that given the same data, anyone may
replicate your results. In addition, many journals require the creation and dissemination of “replication data
sets” in order that others may replicate your results (see King, 1995). Whether you wish to create replication
materials for your own records, or contribute data to others as a companion to your published work, Zelig
makes this process easy.

7.3.1 Saving Replication Materials

Let mydata be your final data set, z.out be your zelig() output, and s.out your sim() output. To save
all of this in one file, type:

> save(mydata, z.out, s.out, file = "replication.RData")

This creates the file replication.RData in your working directory. You may compress this file using zip or
gzip tools.

If you have run several specifications, all of these estimates may be saved in one .RData file. Even if you
only created quantities of interest from one of these models, you may still save all the specifications in one
file. For example:

> save(mydata, z.out1, z.out2, s.out, file = "replication.RData")

Although the .RData format can contain data sets as well as output objects, it is not the most space-
efficient way of saving large data sets. In an uncompressed format, ASCII text files take up less space
than data in .RData format. (When compressed, text-formatted data is still smaller than .RData-formatted
data.) Thus, if you have more than 100,000 observations, you may wish to save the data set separately from
the Zelig output objects. To do this, use the write.table() command. For example, if mydata is a data
frame in your workspace, use write.table(mydata, file = "mydata.tab") to save this as a tab-delimited
ASCII text file. You may specify other delimiters as well; see help.zelig("write.table") for options.

7.3.2 Replicating Analyses

If the data set and analyses are all saved in one .RData file, located in your working directory, you may
simply type:

> load("replication.RData") # Loads the replication file.

> z.rep <- repl(z.out) # To replicate the model only.

> s.rep <- repl(s.out) # To replicate the model and

# quantities of interest.

By default, repl() uses the same options used to create the original output object. Thus, if the original
s.out object used bootstrapping with 245 simulations, the s.rep object will similarly have 245 bootstrapped
simulations. In addition, you may use the prev option when replicating quantities of interest to reuse rather
than recreate simulated parameters. Type help.zelig("repl") to view the complete list of options for
repl().

If the data were saved in a text file, use read.table() to load the data, and then replicate the analysis:

> dat <- read.table("mydata.tab", header = TRUE) # Where `dat' is the same

> load("replication.RData") # as the name used in

> z.rep <- repl(z.out) # `z.out'.
> s.rep <- repl(s.out)

If you have problems loading the data, please refer to Section 3.2.2.
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Finally, you may use the identical() command to ensure that the replicated regression output is in
every way identical to the original zelig() output.4 For example:

> identical(z.out$coef, z.rep$coef) # Checks the coefficients.

Simulated quantities of interest will vary from the original quantities if parameters are re-simulated or re-
sampled. If you wish to use identical() to verify that the quantities of interest are identical, you may
use

# Re-use the parameters simulated (and stored) in the original sim() output.

> s.rep <- repl(s.out, prev = s.out$par)

# Check that the expected values are identical. You may do this for each qi.

> identical(s.out$qi$ev, s.rep$qi$ev)

4The identical() command checks that numeric values are identical to the maximum number of decimal places (usually
16), and also checks that the the two objects have the same class (numeric, character, integer, logical, or factor). Refer to
help(identical) for more information.
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Chapter 8

Rapid Development Guide

8.1 Introduction

Programming a Zelig module is a simple procedure. By following several simple steps, any statistical model
can be implemented in the Zelig software suite. The following document places emphasis on speed and
practicality, rather than the numerous, technical details involved in developing statistical models. That is,
this guide will explain how to quickly and most simply include existing statistical software in the Zelig suite.

8.2 Overview

In order for a Zelig model to function correctly, four components need to exist:

a statistical model : This can be any statistical model of the developer’s choosing, though it is suggested
that it be written in R. Examples of statistical models already implemented in Zelig include: Brian
Ripley’s glm and Kosuke Imai’s MNP models.

zelig2model This method acts as a bridge between the external statistical model and the Zelig software
suite

param.model This method specifies the simulated parameters used to compute quantities of interest

qi.model This method computes - using the fitted statistical model, simulated parameters, and explanatory
data - the quantities of interest. Compared with the zelig2 and param methods,

In the above description, replace the italicized model text with the name of the developer’s model.
For example, if the model’s name is “logit”, then the corresponding methods will be titled zelig2logit,
param.logit, and qi.logit.

8.3 zelig.skeleton: Automating Zelig Model Creation

The fastest way to setup and begin programming a Zelig model is the use the zelig.skeleton function,
available within the Zelig package. This function allows a fast, simple way to create the zelig2, describe,
param, and qi methods with the necessary boilerplate. As a result, zelig.skeleton closely mirrors the
package.skeleton method included in core R.
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8.3.1 A Demonstrative Example

library(Zelig) # [1]

zelig.skeleton(

"my.zelig.package", # [2]

models = c("gamma", "logit"), # [3]

author = "Your Name", # [4]

email = "your.email@someplace.com" # [5]

)

8.3.2 Explanation of the zelig.skeleton Example

The above numbered comments correspond to the following:

[1] The Zelig package must be imported when using zelig.skeleton.

[2] The first parameter of zelig.skeleton specifies the name of the package

[3] The models parameter specifies the titles of the Zelig models to be included in the package. In the above
example, all necessary files and methods for building the “gamma” and “logit” models will be included
in Zelig package.

[4] Specify the author’s name

[5] Specify the email address of the software maintainer

8.3.3 Conclusion

The zelig.skeleton function provides a way to automatically generate the necessary methods and file
to create an arbitrary Zelig package. The method body, however, will be incomplete, save for some light
documentation additions and programming boilerplate. For a detailed specification of the zelig.skeleton

method, refer to Zelig help file by typing:

library(Zelig)

?zelig.skeleton

in an interactive R-session.

8.4 zelig2 : Interacting with Existing Statistical Models in Zelig

The zelig2 function acts as the bridge between the Zelig module and the existing statistical model. That is,
the results of this function specify the parameters to be passed to a previously completed statistical model-
fitting function. In this sense, there is nothing tricky about the zelig2 function. Simply construct a list
with key-value pairs in the following fashion:

• Keys (names on the lefthand-side of an equal sign) represent parameters that are submitted to the
existing model function

• Values (variables, etc. on the righthand-side of an equal sign) represent values to set the corresponding
the parameter to.

• Keys with leading periods are typically reserved for specific zelig2 purposes. In particular, the
key .function specifies the name of the function that calls the existing statistical model.

an ellipsis (. . . ) specifies that all additional, optional parameters not specified in the signature of the zelig2model_function
method, will be included in the external method’s call, despite not being specifically set.
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8.4.1 A Simple Example

For example, if a developer wanted to call an existing model "SomeModel" with the parameter weights set
to 1, the appropriate return-value (a list) for the zelig2 function would be:

zelig2some.model <- function(formula, data) {

list(.function = "SomeModel",

formula = formula,

weights = 1

)

}

8.4.2 A More Detailed Example

A more typical example would be the case of fitting a basic logistic regression. The following code, already
implemented in Zelig, acts as an interface between Zelig packages and R’s built-in glm function:

zelig2logit <- function (formula, weights = NULL, ..., data) {

list(.function = "glm", # [1]

formula = formula, # [2]

weights = weights, # ...

data = data, # ...

family = # [3]

binomial(link="logit"),

model = FALSE # ...

)

}

The comments in the above code correspond to the following:

[1] Pass all parameters to the glm function

[2] Specify that the parameters formula, weights, and data be given the same values as those passed into
the zelig2 function itself. That is, whichever values the end-user passes to zelig will be passed to
the glm function

[3] Specify that the parameters family and model always be given the corresponding values - binomial(link="logit")
and FALSE - regardless of what the end-user passes as a parameter.

Note that the parameters - formula, weights, data, family, model - correspond to those of the glm

function. In general, this will be the case for any zelig2 method. That is, every zelig2 method should
return a list containing the parameters belonging to the external model, as well as, the reserved keyword
.function.

If you are unsure about the parameters that are passed to an existing statistical model, simply use the
args or formals functions (included in R). For example, to get a list of acceptable parameters to the glm

function, simply type:

args(glm)
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8.4.3 An Even-More Detailed Example

Occasionally the statistical model and the standard style of Zelig input differ. In these instances, it may be
necessary to manipulate information about the formula and constraints. This additional step in building
the zelig2 method is common only amongst multivariate models, as seen below in the bprobit model
(bivariate probit regression for Zelig).

zelig2bprobit <- function(formula, ..., data) {

# [1]

formula <- parse.formula(formula, "bprobit")

# [2]

tmp <- cmvglm(formula, "bprobit", 3)

# return list

list(

.function = "vglm", # [3]

formula = tmp$formula, # [4]

family = bprobit, # [5]

data = data,

# [6]

constraints = tmp$constraints

)

}

The following is an explanation of the above code:

[1] Convert Zelig-style formula data-types into the style that the vglm function understands

[2] Extract constraint information from the formula object, as is the style commonly supported by Zelig

[3] Specify the vglm as the statistical model fitting function

[4] Specify the formula to be used by the vglm function when performing the model fitting. Note that this
object is created by using both the parse.formula and cmvglm functions

[5] Specify the family of the model

[6] Specify the constraints to be used by the vglm function when performing the model fitting. Note that
this object is created by using both the parse.formula and cmvglm functions

Note that the functions parse.formula and cmvglm are included in the core Zelig software package. Infor-
mation concerning these functions can be found by typing:

library(Zelig)

?parase.formula

?cmvglm

in an interactive R-session.
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8.4.4 Summary and More Information aboput zelig2 Methods

zelig2 functions can be of varying difficulty - from simple parameter passing to reformatting and creating
new data objects to be used by the external model-fitting function. To see more examples of this usage,
please refer to the survey.zelig and multinomial.zelig packages. Regardless of the model’s complexity,
it ends with a simple list specifying which parameters to pass to a preexisting statistical model.

For more information on the zelig2 function’s full features, see the Advanced zelig2 Manual, or type:

library(Zelig)

?zelig2

within an interactive R-session.

8.5 param: Simulating Parameters

The param function simulates and specifies parameters necessary for computing quantities of interest. That
is, the param function is the ideal place to specify information necessary for the qi method. This includes:

Ancillary parameters These parameters specifying information about the underlying probability distri-
bution. For example, in the case of the Normal Distribution, σ (standard deviation) and µ (mean)
would be considered ancillary parameters.

Link function That is, the function providing the relationship between the predictors and the mean of the
distribution function. This is typically of very little importance (compared to the inverse link function),
but is frequently included for completeness. For Gamma distribution, the link function is the inverse
function: f(x) = 1

x

Inverse link function Typically crucial for simulating quantities of interest of Generalized Linear Models.
For the binomial distribution, the inverse-link function is the logit function: f(x) = ex

1+ex

Simulated Parameters These random draws simulate the parameters of the fitted statistical model. Typ-
ically, the qi method uses these to simulate quantities of interest for the given model. As a result,
these are of paramount importance.

The following sections describe how these ideas correspond to the structure of a well-written param function.

8.5.1 The Function Signature

The param function takes only two parameters, but outputs a wealth of information important in computing
quantities of interest. The following is the function signature:

param.logit <- function (obj, num)

The above parameters are:

obj An object of class zelig 1. This contains the fitted statistical model and associated information.

num An integer specifying the number of simulations to be drawn. This value is specified by the end-user,
and defaults to 1000 if no value is specified.

1 For a detailed specification of the zelig class, type: ?zelig within a interactive Zelig-session.
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8.5.2 The Function Return Value

In similar fashion to the zelig2 method, the param method takes return values as a list of key-value pairs.
However, the options are not as diverse. That is, the list can only be given a set of specific values: ancillary,
coef, simulations, link, linkinv, and family.

In most cases, however, the parameters ancillary, simulations, and linkinv are sufficient. The
following is an example take from Zelig’s gamma model:

# Simulate Parameters for the gamma Model

param.gamma <- function(obj, num) {

# NOTE: gamma.shape is a method belonging to the

# GLM class, specifying maximum likelihood

# estimates of the distribution's shape

# parameter. It is a list containing two

# values: 'alpha' and 'SE'

shape <- gamma.shape(obj)

# simulate ancillary parameters

alpha <- rnorm(n=num, mean=shape$alpha, sd=shape$SE)

# simulate maximum

sims <- mvrnorm(n = num, mu = coef(obj), Sigma = vcov(obj))

# return results

list(

alpha = alpha, # [1]

simulations = sims, # [2]

# ...

# [3]

linkinv = function (x) 1/x

)

}

The above code does the following:

[1] Specify the ancillary parameters, typically referred to as the greek letter α. In the above example, alpha
is the shape of the model’s underlying gamma distribution.

[2] Specify the parameter simulations, typically referred to as the greek letter β, to be used in the qi

function.

[3] Specify the inverse-link function 2, used to compute expected values and a variety of other quantities of
interest, once samples are extracted from the model’s statistical distribution.

8.5.3 Summary and More Information param Methods

The param method’s basic purpose is to describe the statistical and systematic variables of the Zelig model’s
underlying distribution. Defining this method is an important step towards simplifying the sim method.

2The “inverse-link” function is also commonly referred to as the “mean” function. Typically, this function specifies the
relationship between linear predictors and the mean of a distribution function. As a result, it is only used in describing
generalized linear models
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That is, by specifying features of the model - coefficients, systematic components, inverse link functions, etc.
- and simulating specific parameters, the sim method can focus entirely on simulating quantities of interest.

8.6 qi: Simulating Quantities of Interest

The qi function of any Zelig model simulates quantities of interest using the fitted statistical model, taken
from the zelig2 function, and the simulated parameters, taken from the param function. As a result, the
qi function is the most important component of a Zelig model.

8.6.1 The qi Function Signature

While the implementation of the qi function can differ greatly from one model to another, the signature
always remains the same and closely parallels the signature of the sim function.

qi.logit <- function(obj, x=NULL, x1=NULL, y=NULL, param=NULL)

8.6.2 The qi Function Return Values

Similar to the return values of both the zelig2 and param function, the qi function takes an list of key-
value pairs as a return value. The keys, however, follow a much simpler convention, and a single rule: the
key (left-side of the equal sign) is a quoted character-string naming the quantity of interest and the value
(right-side of the equal sign) are the actual simulations.

The following is a short example:

list(

"Expected Value" = ev,

"Predicted Value" = pv

)

where ev and pv are respectively simulations of the model’s expected values and predicted values.

8.6.3 Coding Conventions for the qi Function

While the following is unnecessary, it provides a few simple guidelines to simplifying and improving readability
of a model’s qi function:

• Divide repetitive work amongst other functions. For example, if you simulate an expected value for
both the x and x1, it is better to write a .compute.ev function and simply call it twice

• Always compute an expected values and predicted values independently and before writing code to
create first differences, risk ratios, and average treatment effects

• Write code for average treatment effects only after all the other code has been debugged and completed
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8.6.4 A Simplified Example

The following is a simplified example of the qi function for the logit model. Note that the example is divided
into two sections: one specifying the return values and titles of the quantities of interest (see Section 8.6.4)
and one computing the simulated expected values of the model (see Section 8.6.4).

qi.logit Function

#' simulate quantities of interest for the logit models

qi.logit <- function(obj, x=NULL, x1=NULL, y=NULL, num=1000,

param=NULL) {

# [1]

ev1 <- .compute.ev(obj, x, num, param)

ev2 <- .compute.ev(obj, x1, num, param)

# [2]

list(

"Expected Values: E(Y|X)" = ev1,

"Expected Values (for X1)" = ev2,

# [3]

"First Differences: E(Y|X1) - E(Y|X)" = ev2 - ev1

)

}

.compute.ev Function

.compute.ev <- function(obj, x=NULL, num=1000, param=NULL) {

# values of NA are ignored by the summary function

if (is.null(x))

return(NA)

# extract simulations

coef <- coef(param)

link.inverse <- linkinv(param)

eta <- coef %*% t(x)

# invert link function

theta <- matrix(link.inverse(eta), nrow = nrow(coef))

ev <- matrix(theta, ncol=ncol(theta))

ev

}

The above code illustrates a few of the ideas:

[1] Compute quantities of interest using re-usable functions that express the idea clearly. This both reduces
the amount of code necessary to produce the simulations, and improves readability of the source code.

[2] Return quantities of interest as a list. Note: titles of quantities of interest are on the left of the equal
signs, while simulated values are on the right.

62



[3] Simulate first differences by using two previous computed quantities of interest.

[4] Define an additional function that simulates expected values, rather than placing such code in the actual
qi method.

In addition, this function two generic functions that are defined in the Zelig software suite, and are partic-
ularly used with the param class:

coef Extract the simulations of the parameters. Specifically, this returns the simulations produced in the
param function

linkinv Return the inverse of the link function. Specifically, this returns the inverse-link functions specified
in the param function

8.6.5 Summary and More Information about qi Methods

The qi function offers a simple template for computing quantities of interest. Particularly, if a few a coding
conventions are followed, the qi function can provide transparent, easy-to-read simulation methods.

8.7 Conclusion

The above sections detail the fastest way to develop Zelig models. For the vast majority of applications and
external statistical packages, this should suffice. However, at times, more elaborate measures may need to be
taken. If this is the case, the API specifications for each particular methods should be read, since a wealth
of information has been omitted in order to simplify this tutorial.

For more detailed information, consult the zelig2, param, and qi sections of the Zelig Development
manual.
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Chapter 9

Generalizing Common Components of
Fitted Statistical Models

9.1 Introduction

Several general features - sampling distribution, link function, systematic component, ancillary parameters,
etc. - comprise statistical models. These features, while vastly differing between any two given specific
models, share features that are easily classifiable, and usually necessary in the simulation of quantities of
interest. That is, all statistical models have similar traits, and can be simulated using similar methods.
Using this fact, the parameters class provides a set of functions and data-structures to aid in the planning
and implementation of the statistical model.

9.2 Method Signature of param

The signature of the param method is straightforward and does not vary between differ Zelig models.

param.logit <- function (obj, num, ...) {

# ...

}

9.3 Return Value of param

The return value of a param method is simply a list containing several entries:

simulations A vector or matrix of random draws taken from the model’s distribution function. For example,
a logit model will take random draws from a Multivariate Normal distribution.

alpha A vector specifying parameters to be passed into the distribution function. Values for this range from
scaling factors to statistical means.

fam An optional parameter. fam must be an object of class“family”. This allows for the implicit specification
of the link and link-inverse function. It is recommend that the developer set either this, the link, or
the linkinv parameter explicitly. Setting the family object implicitly defines link and linkinv.

link An optional parameter. link must be a function. Setting the link function explicitly is useful for
defining arbitrary statistical models. link is used primarily to numerically approximate its inverse - a
necessary step for simulating quantities of interest.
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linkinv An optional parameter. linkinv must be a function. Setting the link’s inverse explicitly allows for
faster computations than a numerical approximation provides. If the inverse function is known, it is
recommended that this function is explicitly defined.

9.4 Writing the param Method

The“param” function of an arbitrary Zelig model draws samples from the model, and describes the statistical
model. In practice, this may be done in a variety of fashions, depending upon the complexity of the model

9.4.1 List Method: Returning an Indexed List of Parameters

While the simple method of returning a vector or matrix from a param function is extremely simple, it has
no method for setting link or link-inverse functions for use within the actual simulation process. That is, it
does not provide a clear, easy-to-read method for simulating quantities of interest. By returning an indexed
list - or a parameters object - the developer can provide clearly labeled and stored link and link-inverse
functions, as well as, ancillary parameters.

Example of Indexed List Method with fam Object Set

param.logit <- function(z, x, x1=NULL, num=num)

list(

coef = mvrnorm(n=num, mu=coef(z), Sigma=vcov(z)),

alpha = NULL,

fam = binomial(link="logit")

)

Explanation of Indexed List with fam Object Set Example

The above example shows how link and link-inverse functions (for a “logit” model) can be set using a “family”
object. Family objects exist for most statistical models - logit, probit, normal, Gaussian, et cetera - and
come preset with values for link and link-inverses. This method does not differ immensely from the simple,
vector-only method; however, it allows for the use of several API functions - link, linkinv, coef, alpha - that
improve the readability and simplicity of the model’s implementation.

The param function and the parameters class offer methods for automating and simplifying a large amount
of repetitive and cumbersome code that may come with building the arbitrary statistical model. While both
are in principle entirely optional - so long as the qi function is well-written - they serve as a means to quickly
and elegantly implement Zelig models.

Example of Indexed List Method (with link Function) Set

param.poisson <- function(z, x, x1=NULL, num=num) {

list(

coef = mvrnorm(n=num, mu=coef(z), Sigma=vcov(z)),

link = log,

# because ``link'' is set,

# the next line is purely optional

linkinv = exp

)

}
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Explanation of Indexed List (with link Function) Example

The above example shows how a parameters object can be created with by explicitly setting the statistical
model’s link function. The linkinv parameter is purely optional, since Zelig will create a numerical inverse if
it is undefined. However, the computation of the inverse is typically slower than non-iterative methods. As
a result of this, if the link-inverse is known, it should be set, using the linkinv parameter.

The above example can also contain an alpha parameter, in order to store important ancillary parameters
- mean, standard deviation, gamma-scale, etc. - that would be necessary in the computation of quantities of
interest.

9.5 Using a parameters Object

Typically, a parameters object is used within a model’s qi function. While the developer can typically omit
the param function and the parameters object, it is not recommended. This is because making use of this
function can vastly improve readability and functionality of a Zelig model. That is, param and parameters
automate a large amount of repetitive, cumbersome code, and offer allow access to an easy-to-use API.

9.5.1 Example param Function

qi.logit <- function(z, x, x1=NULL, sim.param=NULL, num=1000) {

coef <- coef(sim.param)

inverse <- linkinv(sim.param)

eta <- coef %*% t(x)

theta <- link.inverse(eta)

# et cetera...

}

9.5.2 Explanation of Above qi Code

The above is a portion of the actual code used to simulate quantities of interest for a “logit” model. By
using the sim.par object, which is automatically passed into the function if a param function is written,
quantities of interest can be computed extremely generically. The step-by-step process of the above function
is as follows:

• Assign the simulations from param.logit to the variable “coef”

• Assign the link-inverse from param.logit to the variable “inverse”

• Compute η (eta) by matrix-multiplying our simulations with our explanatory results

• Conclude “simulating” the quantities of interest by applying the inverse of the link function. The
result is a vector whose median is an approximate value of the quantity of interest and has a standard
deviation that will define the confidence interval around this value

9.6 Future Improvements

In future releases of Zelig, parameters will have more API functions to facilitate common operations - sample
drawing, matrix-multiplication, et cetera - so that the developer’s focus can be exclusively on implementing
important components of the model.
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Chapter 10

Interfacing External Methods with
Zelig

10.1 Introduction

Developers can develop a model, write the model-fitting function, and test it within the Zelig framework
without explicit intervention from the Zelig team. This modularity relies on two R programming conventions:

1. wrappers, which pass arguments from R functions to other R functions or foreign function calls (such
as in C, C++, or Fortran). This step is facilitated by - as will be explained in detail in the upcoming
chapter - the zelig2 function.

2. classes, which tell generic functions how to handle objects of a given class. For a statistical model to
be compliant with Zelig, the model-fitting function must return a classed object.

Zelig implements a unique and simple method for incorporating existing statistical models which lets
developers test within the Zelig framework without any modification of both their own code or the zelig

function itself. The heart of this procedure is the zelig2 function, which acts as an interface between the
zelig function and the existing statistical model. That is, the zelig2 function maps the user-input from
the zelig function into input for the existing statistical model’s constructor function. Specifically, a Zelig
model requires:

1. An existing statistical model, which is invoked through a function call and returns an object

2. A zelig2 function which maps user-input from the zelig function to the existing statistical model

3. A name for the zelig model, which can differ from the original name of the statistical model.

10.2 zelig2 Method Signature

The zelig2 method’s signature typically differs between Zelig models. This is essential, since statistical
models generally have a wide-array of available parameters. To accommodate this, the zelig2 method’s
signature can be any legal function declaration that adhere to the following guidelines:

1. The zelig2 method should be simply named zelig2model, where model is the name of the model,
that will be used by zelig to reference it

2. The first parameter must be titled formula

3. The final parameter must be titled data
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4. The ellipsis parameter must exist somewhere between the formula and data parameters

5. Any parameter necessary for use by the external model should be included in the method’s parameters

The following is an example taken from the logit model:

zelig2logit <- function(formula, weights=NULL, ..., data) {

# ...

}

10.3 zelig2 Return Value

The zelig2 method’s return value should be a list. The return value of the zelig method has two reserved
keywords:

1. .function: the name of the external method1 as a character-string

2. data: the data.frame used by the external method to compute the statistical fit

3. all other keywords without a leading dot specify a parameter to be passed to the external. This

In addition to these parameters, two other other optional reserved keywords exist:

1. .hook: a character-string specifying a function to run immediately after the external function executes

2. .post: a character-string specifying a function to run immediately before the param method executes

For more details on the .hook and .post reserved keywords, see Zelig’s hook API specification.

10.4 Notable Features of the zelig2 Method

The zelig2 method is designed to closely resemble the function call to the external model. That is, this
method’s parameters and return value should always closely resemble the allowable parameters of the external
model’s function. As a result, a good rule of thumb is to include the exact parameters from the model in
the zelig2 method, and only remove those that are irrelevant in the developer’s Zelig implementation.

10.5 Details in Coding the zelig2 Method

Typically, the zelig2 method can be coded in a straightforward manner, needing little additional code aside
from its return-value. This may however not be the case for models that contain an atypical style of formula.
These types of formula include:

• multivariate and multinomial regressions

• regressions containing unique syntax, such as special tags

• regressions that accept lists of formulas

One of the main goals of the Zelig software suite is to unify the language and syntax used in the man
disparate statistical models. As a result, Zelig models that fall into the above categories often benefit from the
existence of helper functions that convert the Zelig-style formula syntax into that used by the external model.
Useful examples of this type of zelig2 method can be found in both the mixed.zelig and bivariate.zelig

packages.

1“The external method” can be any model-fitting function which returns a valid formula object, when the formula method
is called with it as a parameter. That is, basically any R object can be used as a fitted model, so long as it as a valid slot that
can be considered a formula.
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10.6 Example of a zelig2 Method

The following is an illustrative example taken from the Zelig core package and its explanation.

10.6.1 zelig2logit.R

# [1]

zelig2logit <- function(formula, ..., weights=NULL, data)

list(

# [2]

.function = "glm",

# [3]

formula = formula,

data = data,

weights = weights,

# [4]

family = binomial(link="logit"),

model = FALSE,

# [5]

...

)

10.6.2 Explanation of zelig2logit.R

The following correspond to the above example:

[1] The method name and parameter list specify two things:

• the name of the zelig2 method by naming the function zelig2model, where model is the name
of the model being developed

• the list of acceptable parameter to pass to this Zelig model

[2] Specify the name of the external model

[3] Specify parameters that are user-defined. Note that the value of formula, data, and weights vary with
user-input, because they are part of the zelig2 method’s signature

[4] Specify parameter that do not vary with user-input.

[5] Specify that any additional parameters to the zelig2 method be include in the call to the external model

A zelig2model function must always return a list as its return value.
The entries of the returned list have the following format:
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Chapter 11

Simulating Quantities of Interest

11.1 Introduction

For any Zelig module, the qi function is ultimately the most important piece of code that must be written;
it describes the actual process which simulates the quantities of interest. Because of the nature of this
process - and the gamut of statistical packages and their underlying statistical model - it is rare that the
simulation process can be generalized for arbitrary fitted models. Despite this, it is possible to break down
the simulation process into smaller steps.

11.2 Notable Features of qi Function

The typical qi function has several basic procedures:

1. Call the param function: This is entirely optional but sometimes important for the clarity of your
algorithm. This step typically consists of taking random draws from the fitted model’s underlying
probability distribution.

2. Compute the Quantity of Interest : Depending on your model, there are several ways to compute
necessary quantities of interest. Typical methods for computing quantities of interest include:

(a) Using the sample provided by ‘param’ to generate simulations of the quantities of interest

(b) Using a Maximum-likelihood estimate on the fitted model

3. Create a list of titles for your Quantities of Interest :

4. Generate the Quantity of Interest Object : Finally, with the computed Quantities of Interest, you must

11.3 Basic Layout of a qi Function

Now with the general outline of a qi function defined, it is important to discuss the expected procedures and
specifics of implementation.

11.3.1 The Function’s Signature

The qi function’s signature accepts 4 parameters:

obj: An object of type zelig. This wraps the fitted model in the slot “result”
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x: An object of type setx. This object is used to compute important coefficients, parameters, and features
of the data.frame passed to the function call

x1: Also an object of type “setx”. This object is used in a similar fashion, however its presence allows a
variety of quantities of interest to be computed. Notably, this is a necessary parameter to compute
first-differences

num: The number of simulations to compute

param: An object of type param. This is the resulting object from the param function, typically containing
a variety of important quantities - simulations, the inverse link function,

11.3.2 Code Example: qi Function Signature

qi.your_model_name <- function(z, x=NULL, x1=NULL, num=1000) {

# start typing your code here

# ...

# ...

Note: In the above example, the function name “qi.your model name” is merely a placeholder. In order to
register a qi function with zelig, the developer must follow the naming convention qi.your mode name, where
your model name is the name of the developer’s module. For example, if a developer titled his or her zelig
module “logit”, then the corresponding qi function is titled “qi.logit”.

11.3.3 The Function Body

The function body of qi function varies largely from model to model. As a result, it is impossible to create
general guidelines to simulate quantities of interest - or even determine what the quantity of interest is.
Typical methods for computing quantities of interest include:

• Implementing sampling algorithms based on the underlying fitted model, or

• “Predicting” a large number of values from the fitted model

11.3.4 The Return Value

In order for Zelig to process the simulations, they must be returned in one of several formats:

• list(

"TITLE OF QI 1" = val1,

"TITLE OF QI 2" = val2,

# any number of title-val pairs

# ...

"TITLE OF QI N" = val.n

)

• make.qi(

titles = list(title1, title2),

stats = list(val1, val2)

)

•
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In the above example,val1, val2 are data.frames, matrices, or lists representing the simulations of the
quantities of interests, and title1, title2 - and any number of titles - are character-strings that will act as
human-readable descriptions of the quantities of interest. Once results are returned in this format, Zelig will
convert the results into a machine-readable format and summarize the simulations into a comprehensible
format.

NOTE: Because of its readability, it is suggested that the first method is used when returning quantities
of interest.

75



11.4 Simple Example qi function (qi.logit.R)

#' simulate quantities of interest for the logit models

qi.logit <- function(z, x=NULL, x1=NULL, y=NULL, num=1000, param=NULL) {

# compute expected values using the function ".compute.ev"

ev1 <- .compute.ev(obj, x, num, param)

ev2 <- .compute.ev(obj, x1, num, param)

# return simulations of quantities of interest

list(

"Expected Values: E(Y|X)" = ev1,

"Expected Values (for X1): E(Y|X1)" = ev2,

"First Differences: E(Y|X1) - E(Y|X)" = ev2 - ev1

)

}
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Chapter 12

gamma: Gamma Regression for
Continuous, Positive Dependent
Variables
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Chapter 13

logit: Logistic Regression for
Dichotomous Dependent Variables

13.1 logit: Logistic Regression for Dichotomous Dependent Vari-
ables

Logistic regression specifies a dichotomous dependent variable as a function of a set of explanatory variables.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for logistic regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors via the
sandwich package (see [63]). The default type of robust standard error is heteroskedastic and auto-
correlation consistent (HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [2].

∗ "weave": HAC standard errors using the weights given in [38].

– order.by: defaults to NULL (the observations are chronologically ordered as in the original data).
Optionally, you may specify a vector of weights (either as order.by = z, where z exists outside
the data frame; or as order.by = ~z, where z is a variable in the data frame) The observations
are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the sandwich library and
[63] for more options.
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Examples

1. Basic Example

Attaching the sample turnout dataset:

> data(turnout)

Estimating parameter values for the logistic regression:

> z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout)

>

Setting values for the explanatory variables:

> x.out1 <- setx(z.out1, age = 36, race = "white")

Simulating quantities of interest from the posterior distribution.

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile) and high edu-
cation (75th percentile) while all the other variables held at their default values.

> z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout)

> x.high <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out2, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Presenting Results: An ROC Plot

One can use an ROC plot to evaluate the fit of alternative model specifications. (Use demo(roc) to
view this example, or see King and Zeng (2002).)

> z.out1 <- zelig(vote ~ race + educate + age, model = "logit",

+ data = turnout)

> z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout)

83



> rocplot(z.out1$y, z.out2$y, fitted(z.out1), fitted(z.out2))
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Model

Let Yi be the binary dependent variable for observation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(yi | πi)
= πyii (1− πi)1−yi

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k explanatory variables for observation i and β is the vector of coefficients.
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Quantities of Interest

• The expected values (qi$ev) for the logit model are simulations of the predicted probability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value πi.

• The first difference (qi$fd) for the logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "logit", data), then you may examine the available information
in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ
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– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The logit model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43]. Robust standard errors are implemented via the sandwich
package by (author?) [63]. Sample data are from [28].
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Chapter 14

ls: Least Squares Regression for
Continuous Dependent Variables

14.1 ls: Least Squares Regression for Continuous Dependent Vari-
ables

Use least squares regression analysis to estimate the best linear predictor for the specified dependent variables.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "ls", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for least squares regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors based on
sandwich estimators (see [63], [9], and [58]). The default type of robust standard error is heteroskedastic
consistent (HC), not heteroskedastic and autocorrelation consistent (HAC).

In addition, robust may be a list with the following options:

– method: choose from

∗ "vcovHC": (the default if robust = TRUE), HC standard errors.

∗ "vcovHAC": HAC standard errors without weights.

∗ "kernHAC": HAC standard errors using the weights given in [2].

∗ "weave": HAC standard errors using the weights given in [38].

– order.by: only applies to the HAC methods above. Defaults to NULL (the observations are
chronologically ordered as in the original data). Optionally, you may specify a time index (either
as order.by = z, where z exists outside the data frame; or as order.by = ~z, where z is a
variable in the data frame). The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the sandwich library and
[63] for more options.
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Examples

1. Basic Example with First Differences

Attach sample data:

> data(macro)

Estimate model:

> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, with high (80th percentile) and low
(20th percentile) values for the trade variable:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

> plot(s.out1)
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2. Using Dummy Variables

Estimate a model with fixed effects for each country (see Section 2 for help with dummy variables).
Note that you do not need to create dummy variables, as the program will automatically parse the
unique values in the selected variable into discrete levels.
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> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(country),

+ model = "ls", data = macro)

Set values for the explanatory variables, using the default mean/mode values, with country set to the
United States and Japan, respectively:

> x.US <- setx(z.out2, country = "United States")

> x.Japan <- setx(z.out2, country = "Japan")

Simulate quantities of interest:

> s.out2 <- sim(z.out2, x = x.US, x1 = x.Japan)

> plot(s.out2)
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Model

• The stochastic component is described by a density with mean µi and the common variance σ2

Yi ∼ f(yi | µi, σ2).

• The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given xi, and minimizes
the sum of squared residuals,

∑n
i=1(Yi − xiβ)2.
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Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "ls", data), then you may examine the available information in z.out

by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary of
information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

β̂ =

(
n∑
i=1

x′ixi

)−1∑
xiyi

– sigma: the square root of the estimate variance of the random error e:

σ̂ =

∑
(Yi − xiβ̂)2

n− k

– r.squared: the fraction of the variance explained by the model.

R2 = 1−
∑

(Yi − xiβ̂)2∑
(yi − ȳ)2

– adj.r.squared: the above R2 statistic, penalizing for an increased number of explanatory vari-
ables.

– cov.unscaled: a k × k matrix of unscaled covariances.

90



• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected values) for the specified values
of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Least Squares Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The least squares regression is part of the stats package by William N. Venables and Brian D. Ripley [57].In
addition, advanced users may wish to refer to help(lm) and help(lm.fit).Robust standard errors are
implemented via the sandwich package by Achim Zeileis [63].Sample data are from [28].
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Chapter 15

negbinom: Negative Binomial
Regression for Event Count
Dependent Variables

15.1 negbinom: Negative Binomial Regression for Event Count De-
pendent Variables

Use the negative binomial regression if you have a count of events for each observation of your dependent
variable. The negative binomial model is frequently used to estimate over-dispersed event count models.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "negbinom", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for negative binomial
regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors via the
sandwich package (see [63]). The default type of robust standard error is heteroskedastic and auto-
correlation consistent (HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [2].

∗ "weave": HAC standard errors using the weights given in [38].

– order.by: defaults to NULL (the observations are chronologically ordered as in the original data).
Optionally, you may specify a vector of weights (either as order.by = z, where z exists outside
the data frame; or as order.by = ~z, where z is a variable in the data frame). The observations
are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the sandwich library and
[63] for more options.
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Example

Load sample data:

> data(sanction)

Estimate the model:

> z.out <- zelig(num ~ target + coop, model = "negbinom", data = sanction)

> summary(z.out)

Set values for the explanatory variables to their default mean values:

> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
4

0.
8

Expected Values: E(Y|X)

N = 1000   Bandwidth = 0.07983

D
en

si
ty

0 5 10 15 20

0.
00

0.
10

Predicted Values: Y|X

N = 1000   Bandwidth = 0.5061

D
en

si
ty

94



Model

Let Yi be the number of independent events that occur during a fixed time period. This variable can take
any non-negative integer value.

• The negative binomial distribution is derived by letting the mean of the Poisson distribution vary
according to a fixed parameter ζ given by the Gamma distribution. The stochastic component is given
by

Yi | ζi ∼ Poisson(ζiµi),

ζi ∼
1

θ
Gamma(θ).

The marginal distribution of Yi is then the negative binomial with mean µi and variance µi + µ2
i /θ:

Yi ∼ NegBinom(µi, θ),

=
Γ(θ + yi)

y! Γ(θ)

µyii θ
θ

(µi + θ)θ+yi
,

where θ is the systematic parameter of the Gamma distribution modeling ζi.

• The systematic component is given by
µi = exp(xiβ)

where xi is the vector of k explanatory variables and β is the vector of coefficients.

Quantities of Interest

• The expected values (qi$ev) are simulations of the mean of the stochastic component. Thus,

E(Y ) = µi = exp(xiβ),

given simulations of β.

• The predicted value (qi$pr) drawn from the distribution defined by the set of parameters (µi, θ).

• The first difference (qi$fd) is
FD = E(Y |x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "negbinom", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– theta: the maximum likelihood estimate for the stochastic parameter θ.

– SE.theta: the standard error for theta.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the fitted values for the systemic component λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by (µi, θ).

– qi$fd: the simulated first differences in the simulated expected values given the specified values
of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Negative Binomial Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The negative binomial model is part of the MASS package by William N. Venable and Brian D. Ripley [57].
Advanced users may wish to refer to help(glm.nb) as well as [43]. Robust standard errors are implemented
via sandwich package by Achim Zeileis [63].Sample data are from [39].
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Chapter 16

normal: Normal Regression for
Continuous Dependent Variables

16.1 normal: Normal Regression for Continuous Dependent Vari-
ables

The Normal regression model is a close variant of the more standard least squares regression model (see
Section 14.1). Both models specify a continuous dependent variable as a linear function of a set of explanatory
variables. The Normal model reports maximum likelihood (rather than least squares) estimates. The two
models differ only in their estimate for the stochastic parameter σ.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for normal regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors via the
sandwich package (see [63]). The default type of robust standard error is heteroskedastic and auto-
correlation consistent (HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [2].

∗ "weave": HAC standard errors using the weights given in [38].

– order.by: defaults to NULL (the observations are chronologically ordered as in the original data).
Optionally, you may specify a vector of weights (either as order.by = z, where z exists outside
the data frame; or as order.by = ~z, where z is a variable in the data frame). The observations
are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the sandwich library and
[63] for more options.
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Examples

1. Basic Example with First Differences

Attach sample data:

> data(macro)

Estimate model:

> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal",

+ data = macro)

Summarize of regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, with high (80th percentile) and low
(20th percentile) values for trade:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

A visual summary of quantities of interest:

> plot(s.out1)
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2. Using Dummy Variables

Estimate a model with a dummy variable for each year and country (see 2 for help with dummy
variables). Note that you do not need to create dummy variables, as the program will automatically
parse the unique values in the selected variables into dummy variables.

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(year)

+ + as.factor(country), model = "normal", data = macro)

Set values for the explanatory variables, using the default mean/mode variables, with country set to
the United States and Japan, respectively:

> ### x.US <- try(setx(z.out2, country = "United States"),silent=T)

> ### x.Japan <- try(setx(z.out2, country = "Japan"),silent=T)

Simulate quantities of interest:

> ### s.out2 <- try(sim(z.out2, x = x.US, x1 = x.Japan), silent=T)

> ###try(summary(s.out2))
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Model

Let Yi be the continuous dependent variable for observation i.

• The stochastic component is described by a univariate normal model with a vector of means µi and
scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

• The systematic component is
µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of coefficients.

Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the the stochastic component,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

• The predicted value (qi$pr) is drawn from the distribution defined by the set of parameters (µi, σ).

• The first difference (qi$fd) is:
FD = E(Y | x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "normal", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: fitted values. For the normal model, these are identical to the linear predictors.

– linear.predictors: fitted values. For the normal model, these are identical to fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by (µi, σ).

– qi$fd: the simulated first difference in the simulated expected values for the values specified in x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Normal Regression Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The normal model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43]. Robust standard errors are implemented via the sandwich
package by (author?) [63]. Sample data are from [28].
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Chapter 17

poisson: Poisson Regression for Event
Count Dependent Variables

17.1 poisson: Poisson Regression for Event Count Dependent Vari-
ables

Use the Poisson regression model if the observations of your dependent variable represents the number of
independent events that occur during a fixed period of time (see the negative binomial model, Section 15.1,
for over-dispersed event counts.).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for poisson regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors via the
sandwich package (see [63]). The default type of robust standard error is heteroskedastic and auto-
correlation consistent (HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [2].

∗ "weave": HAC standard errors using the weights given in [38].

– order.by: defaults to NULL (the observations are chronologically ordered as in the original data).
Optionally, you may specify a vector of weights (either as order.by = z, where z exists outside
the data frame; or as order.by = ~z, where z is a variable in the data frame). The observations
are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the sandwich library and
[63] for more options.
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Example

Load sample data:

> data(sanction)

Estimate Poisson model:

> z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction)

> summary(z.out)

Set values for the explanatory variables to their default mean values:

> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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Model

Let Yi be the number of independent events that occur during a fixed time period. This variable can take
any non-negative integer.

• The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.

• The systematic component is

λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of coefficients.

Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = λi = exp(xiβ),

given draws of β from its sampling distribution.

• The predicted value (qi$pr) is a random draw from the poisson distribution defined by mean λi.

• The first difference in the expected values (qi$fd) is given by:

FD = E(Y |x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "poisson", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the fitted values for the systemic component λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions defined by λi.

– qi$fd: the simulated first differences in the expected values given the specified values of x and
x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Poisson Regression Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The poisson model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43]. Robust standard errors are implemented via the sandwich
package by (author?) [63]. Sample data are from [39].
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Chapter 18

probit: Probit Regression for
Dichotomous Dependent Variables

18.1 probit: Probit Regression for Dichotomous Dependent Vari-
ables

Use probit regression to model binary dependent variables specified as a function of a set of explanatory
variables.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for probit regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust standard errors via the
sandwich package (see [63]). The default type of robust standard error is heteroskedastic and auto-
correlation consistent (HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [2].

∗ "weave": HAC standard errors using the weights given in [38].

– order.by: defaults to NULL (the observations are chronologically ordered as in the original data).
Optionally, you may specify a vector of weights (either as order.by = z, where z exists outside
the data frame; or as order.by = ~z, where z is a variable in the data frame). The observations
are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method. See the sandwich library and
[63] for more options.
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Examples

Attach the sample turnout dataset:

> data(turnout)

Estimate parameter values for the probit regression:

> z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout)

> summary(z.out)

Set values for the explanatory variables to their default values.

> x.out <- setx(z.out)

Simulate quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Model

Let Yi be the observed binary dependent variable for observation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi),

where πi = Pr(Yi = 1).

• The systematic component is

πi = Φ(xiβ)

where Φ(µ) is the cumulative distribution function of the Normal distribution with mean 0 and unit
variance.

Quantities of Interest

• The expected value (qi$ev) is a simulation of predicted probability of success

E(Y ) = πi = Φ(xiβ),

given a draw of β from its sampling distribution.

• The predicted value (qi$pr) is a draw from a Bernoulli distribution with mean πi.

• The first difference (qi$fd) in expected values is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1)/Pr(Y = 1 | x).
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• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "probit", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the in-sample fitted values.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values, or predicted probabilities, for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions defined by the predicted
probabilities.
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– qi$fd: the simulated first differences in the predicted probabilities for the values specified in x

and x1.

– qi$rr: the simulated risk ratio for the predicted probabilities simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The probit model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43]. Robust standard errors are implemented via the sandwich
package by (author?) [63]. Sample data are from [28].
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Chapter 19

cloglog.net: Network Complementary
Log Log Regression for Dichotomous
Proximity Matrix Dependent
Variables

19.1 cloglog.net: Network Complementary Log Log Regression
for Dichotomous Proximity Matrix Dependent Variables

Use network complementary log log regression analysis for a dependent variable that is a binary valued
proximity matrix (a.k.a. sociomatricies, adjacency matrices, or matrix representations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "cloglog.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network dataframe):

> data(friendship)

>

>

Estimate model:

> z.out <- zelig(friends ~ advice + prestige + perpower, model = "cloglog.net", data = friendship)

> summary(z.out)

>

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

>
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Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

>
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low personal power (25th percentile) and high
personal power (75th percentile) while all the other variables are held at their default values.

> x.high <- setx(z.out, perpower = quantile(friendship$perpower, prob = 0.75))

> x.low <- setx(z.out, perpower = quantile(friendship$perpower, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)

>
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Model

The cloglog.net model performs a complementary log log regression of the proximity matrix Y, a m×m
matrix representing network ties, on a set of proximity matrices X. This network regression model is
directly analogous to standard complementary log log regression element-wise on the appropriately vectorized
matrices. Proximity matrices are vectorized by creating Y , a m2×1 vector to represent the proximity matrix.
The vectorization which produces the Y vector from the Y matrix is performed by simple row-concatenation
of Y. For example, if Y is a 15× 15 matrix, the Y1,1 element is the first element of Y , and the Y2,1 element
is the second element of Y and so on. Once the input matrices are vectorized, standard complementary log
log regression is performed.

Let Yi be the binary dependent variable, produced by vectorizing a binary proximity matrix, for obser-
vation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi)

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi = 1− exp[exp(−xiβ)]

where xi the vector of k explanatory variables for observation i and β is the vector of coefficients.

Quantities of Interest

The quantities of interest for the network complementary log log regression are the same as those for the
standard complementary log log regression.

• The expected values (qi$ev) for the cloglog.nett model are simulations of the predicted probability
of a success:

E(Y ) = πi = 1− exp[exp(−xiβ)],

given draws of β from its sampling distribution.

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value πi.

• The first difference (qi$fd) for the network complementary log log model is defined as

FD = Pr(Y = 1|x1)− Pr(Y = 1|x)

Output Values

The output of each Zelig command contains useful information which you may view. For example, you run
z.out <- zelig(y ~ x, model = "cloglog.net", data), then you may examine the available informa-

tion in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.
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– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood plus the num-
ber of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

• From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard errors, p-values, and
t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev1: the simulated expected probabilities for the specified values of x.

– qi$pr1: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite Network Log-Log Regeression

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network complementary log log regression is part of the netglm package by Skyler J. Cranmer and is
built using some of the functionality of the sna package by Carter T. Butts [5].In addition, advanced users
may wish to refer to help(netbinom). Sample data are fictional.
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Chapter 20

gamma.net: Network Gamma
Regression for Continuous, Positive
Proximity Matrix Dependent
Variables

20.1 gamma.net: Network Gamma Regression for Continuous, Pos-
itive Proximity Matrix Dependent Variables

Use the network gamma regression model if you have a positive-valued dependent variable that is a binary
valued proximity matrix (a.k.a. sociomatricies, adjacency matrices, or matrix representations of directed
graphs). The gamma distribution assumes that all waiting times are complete by the end of the study
(censoring is not allowed).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "gamma.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for network gamma
regression:

• LF: specifies the link function to be used for the network gamma regression. Default is LF="inverse",
but LF can also be set to "identity" or "log" by the user.

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network dataframe):

> data(friendship)

>
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>

>

Estimate model:

> z.out <- zelig(per ~ perpower, LF="inverse", model="gamma.net", data=friendship)

> summary(z.out)

>

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

>

Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)
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2. Simulating First Differences

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

> s.out2 <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out2)

> plot(s.out2)

>

Model

The gamma.net model performs a gamma regression of the proximity matrix Y, a m×m matrix representing
network ties, on a set of proximity matrices X. This network regression model is directly analogous to
standard gamma regression element-wise on the appropriately vectorized matrices. Proximity matrices are
vectorized by creating Y , a m2 × 1 vector to represent the proximity matrix. The vectorization which
produces the Y vector from the Y matrix is performed by simple row-concatenation of Y. For example, if
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Y is a 15× 15 matrix, the Y1,1 element is the first element of Y , and the Y2,1 element is the second element
of Y and so on. Once the input matrices are vectorized, standard gamma regression is performed.

Let Yi be the dependent variable, produced by vectorizing a binary proximity matrix, for observation i.

• The Gamma distribution with scale parameter α has a stochastic component given by

Y ∼ Gamma(yi|λi, α)

f(y) = 1
αλiΓλi

yλi−1
i exp−

[
yi
α

]
for α, λi, yi > 0.

• The systematic component is given by:

λi =
1

xiβ
.

Quantities of Interest

The quantities of interest for the network gamma regression are the same as those for the standard gamma
regression.

• The expected values (qi$ev) are simulations of the mean of the stochastic component given draws of
α and β from their posteriors:

E(Y ) = αiλ.

• The predicted values (qi$pr) are draws from the gamma distribution for each set of parameters (α, λi).

• The first difference (qi$fd) for the network gamma model is defined as

FD = Pr(Y |x1)− Pr(Y |x)

Output Values

The output of each Zelig command contains useful information which you may view. For example, you run
z.out <- zelig(y ~ x, model = "gamma.net", data), then you may examine the available information

in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output stored in z.out, you may extract:
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– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood plus the num-
ber of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

• From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard errors, p-values, and
t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by (αi, λ).

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite Network Gamma Regeression

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network gamma regression is part of the netglm package by Skyler J. Cranmer and is built using some
of the functionality of the sna package by Carter T. Butts [5].In addition, advanced users may wish to refer
to help(gamma.net). Sample data are fictional.
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Chapter 21

logit.net: Network Logistic Regression
for Dichotomous Proximity Matrix
Dependent Variables

21.1 logit.net: Network Logistic Regression for Dichotomous Prox-
imity Matrix Dependent Variables

Use network logistic regression analysis for a dependent variable that is a binary valued proximity matrix
(a.k.a. sociomatricies, adjacency matrices, or matrix representations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "logit.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network dataframe):

> data(friendship)

>

>

>

Estimate model:

> z.out <- zelig(friends ~ advice + prestige + perpower, model = "logit.net", data = friendship)

> summary(z.out)

>

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

>
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Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

>
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low personal power (25th percentile) and high
personal power (75th percentile) while all the other variables are held at their default values.

> x.high <- setx(z.out, perpower = quantile(friendship$perpower, prob = 0.75))

> x.low <- setx(z.out, perpower = quantile(friendship$perpower, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)

>
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Model

The logit.net model performs a logistic regression of the proximity matrix Y, a m×m matrix representing
network ties, on a set of proximity matrices X. This network regression model is directly analogous to
standard logistic regression element-wise on the appropriately vectorized matrices. Proximity matrices are
vectorized by creating Y , a m2 × 1 vector to represent the proximity matrix. The vectorization which
produces the Y vector from the Y matrix is performed by simple row-concatenation of Y. For example, if
Y is a 15× 15 matrix, the Y1,1 element is the first element of Y , and the Y2,1 element is the second element
of Y and so on. Once the input matrices are vectorized, standard logistic regression is performed.

Let Yi be the binary dependent variable, produced by vectorizing a binary proximity matrix, for obser-
vation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(yi|πi)
= πyii (1− πi)1−yi

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k covariates for observation i and β is the vector of coefficients.

Quantities of Interest

The quantities of interest for the network logistic regression are the same as those for the standard logistic
regression.

• The expected values (qi$ev) for the logit.net model are simulations of the predicted probability of
a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value πi.

• The first difference (qi$fd) for the network logit model is defined as

FD = Pr(Y = 1|x1)− Pr(Y = 1|x)

Output Values

The output of each Zelig command contains useful information which you may view. For example, you run
z.out <- zelig(y ~ x, model = "logit.net", data), then you may examine the available information

in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.
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– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood plus the num-
ber of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

• From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard errors, p-values, and
t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite Network Log-Log Regeression

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network logistic regression is part of the netglm package by Skyler J. Cranmer and is built using some
of the functionality of the sna package by Carter T. Butts [5].In addition, advanced users may wish to refer
to help(netgamma). Sample data are fictional.
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Chapter 22

ls.net: Network Least Squares
Regression for Continuous Proximity
Matrix Dependent Variables

22.1 ls.net: Network Least Squares Regression for Continuous
Proximity Matrix Dependent Variables

Use network least squares regression analysis to estimate the best linear predictor when the dependent
variable is a continuously-valued proximity matrix (a.k.a. sociomatrices, adjacency matrices, or matrix rep-
resentations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "ls.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example with First Differences

Load sample data and format it for social networkx analysis:

> data(sna.ex)

Estimate model:

> z.out <- zelig(Var1 ~ Var2 + Var3 + Var4, model = "ls.net", data = sna.ex)

>

Summarize regression results:

> summary(z.out)

Set explanatory variables to their default (mean/mode) values, with high (80th percentile) and low
(20th percentile) for the second explanatory variable (Var3).

> x.high <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.8))

> x.low <- setx(z.out, Var3 = quantile(sna.ex$Var3, 0.2))
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Generate first differences for the effect of high versus low values of Var3 on the outcome variable.

> try(s.out <- sim(z.out, x = x.high, x1 = x.low))

> try(summary(s.out))

> plot(s.out)
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Model

The ls.net model performs a least squares regression of the sociomatrix Y, a m ×m matrix representing
network ties, on a set of sociomatrices X. This network regression model is a directly analogue to standard
least squares regression element-wise on the appropriately vectorized matrices. Sociomatrices are vectorized
by creating Y , an m2×1 vector to represent the sociomatrix. The vectorization which produces the Y vector
from the Y matrix is preformed by simple row-concatenation of Y. For example if Y is a 15 × 15 matrix,
the Y1,1 element is the first element of Y , and the Y21 element is the second element of Y and so on. Once
the input matrices are vectorized, standard least squares regression is performed. As such:

• The stochastic component is described by a density with mean µi and the common variance σ2

Yi ∼ f(yi|µi, σ2).
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• The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent variable given xi, and minimizes the
sum of squared errors

∑n
i=1(Yi − xiβ)2.

Quantities of Interest

The quantities of interest for the network least squares regression are the same as those for the standard
least squares regression.

• The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.

• The first difference (qi$fd) is:
FD = E(Y |x1)− E(Y |x)

Output Values

The output of each Zelig command contains useful information which you may view. For example, you
run z.out <- zelig(y x, model="ls.net", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE

• From summary(z.out), you may extract:

– mod.coefficients: the parameter estimates with their associated standard errors, p-values, and
t statistics.

β̂ =

(
n∑
i=1

x′ixi

)−1∑
xiyi

– sigma: the square root of the estimate variance of the random error ε:

σ̂ =

∑
(Yi − xiβ̂)2

n− k

– r.squared: the fraction of the variance explained by the model.

R2 = 1−
∑

(Yi − xiβ̂)2∑
(yi − ȳ)2
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– adj.r.squared: the above R2 statistic, penalizing for an increased number of explanatory vari-
ables.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected values) for the specified values
of x and x1.

How to Cite

How to Cite Network Linear Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network least squares regression is part of the sna package by Carter T. Butts [5].In addition, advanced
users may wish to refer to help(netlm).

130

http://GKing.harvard.edu/zelig
http://GKing.harvard.edu/zelig


Chapter 23

poisson.net: Network Poisson
Regression for Count Proximity
Matrix Dependent Variables

23.1 poisson.net: Network Poisson Regression for Count Proxim-
ity Matrix Dependent Variables

Use the ordinal logit regression model if your dependent variable is ordered and categorical, either in the
form of integer values or character strings.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "poisson.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

If Y takes discrete integer values, the as.factor() command will order automatically order the values. If Y
takes on values composed of character strings, such as “strongly agree”, “agree”, and “disagree”, as.factor()
will order the values in the order in which they appear in Y. You will need to replace your dependent variable
with a factored variable prior to estimating the model through zelig(). See Section 2 for more information
on creating ordered factors and Example 1 below.

Example

1. Creating An Ordered Dependent Variable

Load the sample data:

> data(sanction)

Create an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE,

+ levels = c("net gain", "little effect",

+ "modest loss", "major loss"))

Estimate the model:

> # z.out <- zelig(ncost ~ mil + coop, model = "poisson.net", data = sanction)
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Set the explanatory variables to their observed values:

> # x.out <- setx(z.out, fn = NULL)

Simulate fitted values given x.out and view the results:

> # s.out <- sim(z.out, x = x.out)

> # summary(s.out)

2. First Differences

Using the sample data sanction, estimate the empirical model and returning the coefficients:

> # z.out <- zelig(as.factor(cost) ~ mil + coop, model = "ologit",

> # data = sanction)

> # summary(z.out)

Set the explanatory variables to their means, with mil set to 0 (no military action in addition to
sanctions) in the baseline case and set to 1 (military action in addition to sanctions) in the alternative
case:

> # x.low <- setx(z.out, mil = 0)

> # x.high <- setx(z.out, mil = 1)

Generate simulated fitted values and first differences, and view the results:

> # s.out <- sim(z.out, x = x.low, x1 = x.high)

> # summary(s.out)

Model

Let Yi be the ordered categorical dependent variable for observation i that takes one of the integer values
from 1 to J where J is the total number of categories.

• The stochastic component begins with an unobserved continuous variable, Y ∗i , which follows the stan-
dard logistic distribution with a parameter µi,

Y ∗i ∼ Logit(y∗i | µi),

to which we add an observation mechanism

Yi = j if τj−1 ≤ Y ∗i ≤ τj for j = 1, . . . , J.

where τl (for l = 0, . . . , J) are the threshold parameters with τl < τm for all l < m and τ0 = −∞ and
τJ =∞.

• The systematic component has the following form, given the parameters τj and β, and the explanatory
variables xi:

Pr(Y ≤ j) = Pr(Y ∗ ≤ τj) =
exp(τj − xiβ)

1 + exp(τj − xiβ)
,

which implies:

πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
.
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Quantities of Interest

• The expected values (qi$ev) for the ordinal logit model are simulations of the predicted probabilities
for each category:

E(Y = j) = πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
,

given a draw of β from its sampling distribution.

• The predicted value (qi$pr) is drawn from the logit distribution described by µi, and observed as one
of J discrete outcomes.

• The difference in each of the predicted probabilities (qi$fd) is given by

Pr(Y = j | x1) − Pr(Y = j | x) for j = 1, . . . , J.

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups,
and nj is the number of treated observations in category j.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1

nj

nj∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups,
and nj is the number of treated observations in category j.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "ologit", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– zeta: a vector containing the estimated class boundaries τj .

– deviance: the residual deviance.

– fitted.values: the n× J matrix of in-sample fitted values.

– df.residual: the residual degrees of freedom.

– edf: the effective degrees of freedom.

– Hessian: the Hessian matrix.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, and t-statistics.
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• From the sim() output object s.out, you may extract quantities of interest arranged as arrays. Avail-
able quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed by simulation
× quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the expected prob-
abilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values specified in x and
x1, indexed by simulation × quantity × x-observation (for more than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite Network Poisson Regression

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network poisson regression is part of the netglm package by Skyler J. Cranmer and is built using some
of the functionality of the sna package by Carter T. Butts [5].In addition, advanced users may wish to refer
to help(poisson.net). Sample data are fictional.
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Chapter 24

probit.net: Network Probit
Regression for Dichotomous
Proximity Matrix Dependent
Variables

24.1 probit.net: Network Probit Regression for Dichotomous Prox-
imity Matrix Dependent Variables

Use network probit regression analysis for a dependent variable that is a binary valued proximity matrix
(a.k.a. sociomatricies, adjacency matrices, or matrix representations of directed graphs).

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "probit.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network dataframe):

> data(friendship)

>

>

Estimate model:

> z.out <- zelig(friends ~ advice + prestige + perpower, model = "probit.net", data = friendship)

> summary(z.out)

>

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

>
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Simulating quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

>
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low personal power (25th percentile) and high
personal power (75th percentile) while all the other variables are held at their default values.

> x.high <- setx(z.out, perpower = quantile(friendship$perpower, prob = 0.75))

> x.low <- setx(z.out, perpower = quantile(friendship$perpower, prob = 0.25))

> s.out2 <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)

>
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Model

The probit.net model performs a probit regression of the proximity matrix Y, a m×m matrix representing
network ties, on a set of proximity matrices X. This network regression model is directly analogous to
standard probit regression element-wise on the appropriately vectorized matrices. Proximity matrices are
vectorized by creating Y , a m2 × 1 vector to represent the proximity matrix. The vectorization which
produces the Y vector from the Y matrix is performed by simple row-concatenation of Y. For example, if
Y is a 15× 15 matrix, the Y1,1 element is the first element of Y , and the Y2,1 element is the second element
of Y and so on. Once the input matrices are vectorized, standard probit regression is performed.

Let Yi be the binary dependent variable, produced by vectorizing a binary proximity matrix, for obser-
vation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi)

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi = ΦΦΦ(xiβ).
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where ΦΦΦ(µ) is the cumulative distribution function of the Normal distribution with mean 0 and unit
variance.

Quantities of Interest

The quantities of interest for the network probit regression are the same as those for the standard probit
regression.

• The expected values (qi$ev) for the probit.net model are simulations of the predicted probability of
a success:

E(Y ) = πi = ΦΦΦ(xiβ),

given draws of β from its sampling distribution.

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value πi.

• The first difference (qi$fd) for the network probit model is defined as

FD = Pr(Y = 1|x1)− Pr(Y = 1|x)

Output Values

The output of each Zelig command contains useful information which you may view. For example, you
run z.out <- zelig(y ~ x, model = "probit.net", data), then you may examine the available infor-
mation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaikeś Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood plus the num-
ber of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

• From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard errors, p-values, and
t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.
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How to Cite Network Poisson Regression

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network probit regression is part of the netglm package by Skyler J. Cranmer and is built using some
of the functionality of the sna package by Carter T. Butts [5].In addition, advanced users may wish to refer
to help(netpoisson). Sample data are fictional.
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Chapter 25

normal.net: Network Normal
Regression for Continuous Proximity
Matrix Dependent Variables

25.1 normal.net: Network Normal Regression for Continuous Prox-
imity Matrix Dependent Variables

The Network Normal regression model is a close variant of the more standard least squares regression model
(see netlm). Both models specify a continuous proximity matrix (a.k.a. sociomatricies, adjacency matrices,
or matrix representations of directed graphs) dependent variable as a linear function of a set of explanatory
variables. The network Normal model reports maximum likelihood (rather than least squares) estimates.
The two models differ only in their estimate for the stochastic parameter σ.

Syntax

> z.out <- zelig(y ~ x1 + x2, model = "normal.net", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for network normal
regression:

• LF: specifies the link function to be used for the network normal regression. Default is LF="identity",
but LF can also be set to "log" or "inverse" by the user.

Examples

1. Basic Example

Load the sample data (see ?friendship for details on the structure of the network dataframe):

> data(friendship)

>

>

>
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Estimate model:

> z.out <- zelig(perpower ~ friends + advice + prestige, model = "normal.net", data = friendship)

> summary(z.out)

>

Setting values for the explanatory variables to their default values:

> x.out <- setx(z.out)

>

Simulate fitted values.

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

>
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Model

The normal.net model performs a Normal regression of the proximity matrix Y, a m×m matrix representing
network ties, on a set of proximity matrices X. This network regression model is directly analogous to
standard Normal regression element-wise on the appropriately vectorized matrices. Proximity matrices are
vectorized by creating Y , a m2 × 1 vector to represent the proximity matrix. The vectorization which
produces the Y vector from the Y matrix is performed by simple row-concatenation of Y. For example, if
Y is a 15× 15 matrix, the Y1,1 element is the first element of Y , and the Y2,1 element is the second element
of Y and so on. Once the input matrices are vectorized, standard Normal regression is performed.

Let Yi be the continuous dependent variable, produced by vectorizing a continuous proximity matrix, for
observation i.

• The stochastic component is described by a univariate normal model with a vector of means µi and
scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

• The systematic component is given by:
µi = xiβ.

where xi is the vector of k explanatory variables and β is the vector of coefficients.
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Quantities of Interest

The quantities of interest for the network Normal regression are the same as those for the standard Normal
regression.

• The expected value (qi$ev) for the normal.net model is the mean of simulations from the stochastic
component,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

• The predicted value (qi$pr) is a draw from the distribution defined by the set of parameters (µi, σ
2).

• The first difference (qi$fd) for the network Normal model is defined as

FD = Pr(Y |x1)− Pr(Y |x)

Output Values

The output of each Zelig command contains useful information which you may view. For example, you
run z.out <- zelig(y ~ x, model = "normal.net", data), then you may examine the available infor-
mation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the systemic component λ.

– residuals: the working residuals in the final iteration of the IWLS fit.

– linear.predictors: fitted values. For the normal model, these are identical to fitted values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– bic: the Bayesian Information Criterion (minus twice the maximized log-likelihood plus the num-
ber of coefficients times log n).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE

• From summary(z.out)(as well as from zelig()), you may extract:

– mod.coefficients: the parameter estimates with their associated standard errors, p-values, and
t statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by (µi, σ
2).

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.
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How to Cite Network Normal Regression

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The network normal regression is part of the netglm package by Skyler J. Cranmer and is built using some
of the functionality of the sna package by Carter T. Butts [5].In addition, advanced users may wish to refer
to help(normal.net). Sample data are fictional.
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Chapter 26

blogit: Bivariate Logistic Regression
for Two Dichotomous Dependent
Variables

26.1 blogit: Bivariate Logistic Regression for Two Dichotomous
Dependent Variables

Use the bivariate logistic regression model if you have two binary dependent variables (Y1, Y2), and wish to
model them jointly as a function of some explanatory variables. Each pair of dependent variables (Yi1, Yi2)
has four potential outcomes, (Yi1 = 1, Yi2 = 1), (Yi1 = 1, Yi2 = 0), (Yi1 = 0, Yi2 = 1), and (Yi1 = 0, Yi2 = 0).
The joint probability for each of these four outcomes is modeled with three systematic components: the
marginal Pr(Yi1 = 1) and Pr(Yi2 = 1), and the odds ratio ψ, which describes the dependence of one marginal
on the other. Each of these systematic components may be modeled as functions of (possibly different) sets
of explanatory variables.

Syntax

> z.out <- zelig(list(mu1 = Y1 ~ X1 + X2 ,

mu2 = Y2 ~ X1 + X3),

model = "blogit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Input Values

In every bivariate logit specification, there are three equations which correspond to each dependent variable
(Y1, Y2), and ψ, the odds ratio. You should provide a list of formulas for each equation or, you may use
cbind() if the right hand side is the same for both equations

> formulae <- list(cbind(Y1,Y2) ~ X1 + X2)

which means that all the explanatory variables in equations 1 and 2 (corresponding to Y1 and Y2) are
included, but only an intercept is estimated (all explanatory variables are omitted) for equation 3 (ψ).

You may use the function tag() to constrain variables across equations:

> formulae <- list(mu1 = y1 ~ x1 + tag(x3, "x3"),

+ mu2 = y2 ~ x2 + tag(x3, "x3"))
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where tag() is a special function that constrains variables to have the same effect across equations. Thus,
the coefficient for x3 in equation mu1 is constrained to be equal to the coefficient for x3 in equation mu2.

Examples

1. Basic Example

Load the data and estimate the model:

> data(sanction)

> ## sanction

> z.out1 <- zelig(cbind(import, export) ~ coop + cost + target,

+ model = "blogit", data = sanction)

By default, zelig() estimates two effect parameters for each explanatory variable in addition to the
odds ratio parameter; this formulation is parametrically independent (estimating unconstrained effects
for each explanatory variable), but stochastically dependent because the models share an odds ratio.

Generate baseline values for the explanatory variables (with cost set to 1, net gain to sender) and
alternative values (with cost set to 4, major loss to sender):

> x.low <- setx(z.out1, cost = 1)

> x.high <- setx(z.out1, cost = 4)

Simulate fitted values and first differences:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

> plot(s.out1)
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Predicted Probabilities: Pr(Y1=k|X)
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2. Joint Estimation of a Model with Different Sets of Explanatory Variables

Using sample data sanction, estimate the statistical model, with import a function of coop in the
first equation and export a function of cost and target in the second equation:

> z.out2 <- zelig(list(import ~ coop, export ~ cost + target),

+ model = "blogit", data = sanction)

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate draws from the posterior distribution:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

> plot(s.out2)
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Predicted Probabilities: Pr(Y1=k|X)
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Model

For each observation, define two binary dependent variables, Y1 and Y2, each of which take the value of either
0 or 1 (in the following, we suppress the observation index). We model the joint outcome (Y1, Y2) using a
marginal probability for each dependent variable, and the odds ratio, which parameterizes the relationship
between the two dependent variables. Define Yrs such that it is equal to 1 when Y1 = r and Y2 = s and is 0
otherwise, where r and s take a value of either 0 or 1. Then, the model is defined as follows,

• The stochastic component is

Y11 ∼ Bernoulli(y11 | π11)

Y10 ∼ Bernoulli(y10 | π10)

Y01 ∼ Bernoulli(y01 | π01)

where πrs = Pr(Y1 = r, Y2 = s) is the joint probability, and π00 = 1− π11 − π10 − π01.

• The systematic components model the marginal probabilities, πj = Pr(Yj = 1), as well as the odds
ratio. The odds ratio is defined as ψ = π00π01/π10π11 and describes the relationship between the two
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outcomes. Thus, for each observation we have

πj =
1

1 + exp(−xjβj)
for j = 1, 2,

ψ = exp(x3β3).

Quantities of Interest

• The expected values (qi$ev) for the bivariate logit model are the predicted joint probabilities. Simu-
lations of β1, β2, and β3 (drawn from their sampling distributions) are substituted into the systematic
components (π1, π2, ψ) to find simulations of the predicted joint probabilities:

π11 =

{
1
2 (ψ − 1)−1 − a−

√
a2 + b for ψ 6= 1

π1π2 for ψ = 1
,

π10 = π1 − π11,

π01 = π2 − π11,

π00 = 1− π10 − π01 − π11,

where a = 1 + (π1 + π2)(ψ − 1), b = −4ψ(ψ − 1)π1π2, and the joint probabilities for each observation
must sum to one. For n simulations, the expected values form an n× 4 matrix for each observation in
x.

• The predicted values (qi$pr) are draws from the multinomial distribution given the expected joint
probabilities.

• The first differences (qi$fd) for each of the predicted joint probabilities are given by

FDrs = Pr(Y1 = r, Y2 = s | x1)− Pr(Y1 = r, Y2 = s | x).

• The risk ratio (qi$rr) for each of the predicted joint probabilities are given by

RRrs =
Pr(Y1 = r, Y2 = s | x1)

Pr(Y1 = r, Y2 = s | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yij(ti = 1)− E[Yij(ti = 0)]} for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yij(ti = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yij(ti = 1)− ̂Yij(ti = 0)

}
for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yij(ti = 0), the counterfactual pre-
dicted value of Yij for observations in the treatment group, under the assumption that everything stays
the same except that the treatment indicator is switched to ti = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "blogit", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and obtain a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× 4 matrix of the in-sample fitted values.

– predictors: an n× 3 matrix of the linear predictors xjβj .

– residuals: an n× 3 matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× 2 matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× 3 matrix of the Pearson residuals.

• From the sim() output object s.out, you may extract quantities of interest arranged as arrays indexed
by simulation × quantity × x-observation (for more than one x-observation; otherwise the quantities
are matrices). Available quantities are:

– qi$ev: the simulated expected joint probabilities (or expected values) for the specified values of
x.

– qi$pr: the simulated predicted outcomes drawn from a distribution defined by the expected joint
probabilities.

– qi$fd: the simulated first difference in the expected joint probabilities for the values specified in
x and x1.

– qi$rr: the simulated risk ratio in the predicted probabilities for given x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Bivariate Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The bivariate logit function is part of the VGAM package by Thomas Yee [62]. In addition, advanced
users may wish to refer to help(vglm) in the VGAM library. Additional documentation is available at
http://www.stat.auckland.ac.nz/˜ yee.Sample data are from [39]
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Chapter 27

bprobit: Bivariate Logistic Regression
for Two Dichotomous Dependent
Variables

27.1 bprobit: Bivariate Logistic Regression for Two Dichotomous
Dependent Variables

Use the bivariate probit regression model if you have two binaryrun dependent variables (Y1, Y2), and wish to
model them jointly as a function of some explanatory variables. Each pair of dependent variables (Yi1, Yi2)
has four potential outcomes, (Yi1 = 1, Yi2 = 1), (Yi1 = 1, Yi2 = 0), (Yi1 = 0, Yi2 = 1), and (Yi1 = 0, Yi2 = 0).
The joint probability for each of these four outcomes is modeled with three systematic components: the
marginal Pr(Yi1 = 1) and Pr(Yi2 = 1), and the correlation parameter ρ for the two marginal distributions.
Each of these systematic components may be modeled as functions of (possibly different) sets of explanatory
variables.

Syntax

> z.out <- zelig(list(mu1 = Y1 ~ X1 + X2,

mu2 = Y2 ~ X1 + X3,

rho = ~ 1),

model = "bprobit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Input Values

In every bivariate probit specification, there are three equations which correspond to each dependent variable
(Y1, Y2), and the correlation parameter ρ. Since the correlation parameter does not correspond to one of the
dependent variables, the model estimates ρ as a constant by default. Hence, only two formulas (for µ1 and
µ2) are required. If the explanatory variables for µ1 and µ2 are the same and effects are estimated separately
for each parameter, you may use the following short hand:

> fml <- list(cbind(Y1,Y2) ~ X1 + X2)

which has the same meaning as:
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> fml <- list(mu1 = Y1 ~ X1 + X2,

+ mu2 = Y2 ~ X1 + X2,

+ rho = ~ 1)

You may use the function tag() to constrain variables across equations. The tag() function takes a variable
and a label for the effect parameter. Below, the constrained effect of x3 in both equations is called the age

parameter:

> fml <- list(mu1 = y1 ~ x1 + tag(x3, "age"),

+ mu2 = y2 ~ x2 + tag(x3, "age"))

You may also constrain different variables across different equations to have the same effect.

Examples

1. Basic Example

Load the data and estimate the model:

> data(sanction)

> z.out1 <- zelig(cbind(import, export) ~ coop + cost + target,

+ model = "bprobit", data = sanction)

By default, zelig() estimates two effect parameters for each explanatory variable in addition to the
correlation coefficient; this formulation is parametrically independent (estimating unconstrained effects
for each explanatory variable), but stochastically dependent because the models share a correlation pa-
rameter.

Generate baseline values for the explanatory variables (with cost set to 1, net gain to sender) and
alternative values (with cost set to 4, major loss to sender):

> x.low <- setx(z.out1, cost = 1)

> x.high <- setx(z.out1, cost = 4)

Simulate fitted values and first differences:

> s.out1 <- sim(z.out1, x = x.low, x1 = x.high)

> summary(s.out1)

> plot(s.out1)
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2. Joint Estimation of a Model with Different Sets of Explanatory Variables

Using the sample data sanction, estimate the statistical model, with import a function of coop in the
first equation and export a function of cost and target in the second equation:

> fml2 <- list(mu1 = import ~ coop,

+ mu2 = export ~ cost + target)

> z.out2 <- zelig(fml2, model = "bprobit", data = sanction)

> summary(z.out2)

Set the explanatory variables to their means:

> x.out2 <- setx(z.out2)

Simulate draws from the posterior distribution:

> s.out2 <- sim(z.out2, x = x.out2)

> summary(s.out2)

> plot(s.out2)
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Model

For each observation, define two binary dependent variables, Y1 and Y2, each of which take the value of either
0 or 1 (in the following, we suppress the observation index i). We model the joint outcome (Y1, Y2) using
two marginal probabilities for each dependent variable, and the correlation parameter, which describes how
the two dependent variables are related.

• The stochastic component is described by two latent (unobserved) continuous variables which follow
the bivariate Normal distribution:(

Y ∗1
Y ∗2

)
∼ N2

{(
µ1

µ2

)
,

(
1 ρ
ρ 1

)}
,

where µj is a mean for Y ∗j and ρ is a scalar correlation parameter. The following observation mechanism
links the observed dependent variables, Yj , with these latent variables

Yj =

{
1 if Y ∗j ≥ 0,
0 otherwise.

156



• The systemic components for each observation are

µj = xjβj for j = 1, 2,

ρ =
exp(x3β3)− 1

exp(x3β3) + 1
.

Quantities of Interest

For n simulations, expected values form an n× 4 matrix.

• The expected values (qi$ev) for the binomial probit model are the predicted joint probabilities. Simu-
lations of β1, β2, and β3 (drawn form their sampling distributions) are substituted into the systematic
components, to find simulations of the predicted joint probabilities πrs = Pr(Y1 = r, Y2 = s):

π11 = Pr(Y ∗1 ≥ 0, Y ∗2 ≥ 0) =

∫ ∞
0

∫ ∞
0

φ2(µ1, µ2, ρ) dY ∗2 dY
∗
1

π10 = Pr(Y ∗1 ≥ 0, Y ∗2 < 0) =

∫ ∞
0

∫ 0

−∞
φ2(µ1, µ2, ρ) dY ∗2 dY

∗
1

π01 = Pr(Y ∗1 < 0, Y ∗2 ≥ 0) =

∫ 0

−∞

∫ ∞
0

φ2(µ1, µ2, ρ) dY ∗2 dY
∗
1

π11 = Pr(Y ∗1 < 0, Y ∗2 < 0) =

∫ 0

−∞

∫ 0

−∞
φ2(µ1, µ2, ρ) dY ∗2 dY

∗
1

where r and s may take a value of either 0 or 1, φ2 is the bivariate Normal density.

• The predicted values (qi$pr) are draws from the multinomial distribution given the expected joint
probabilities.

• The first difference (qi$fd) in each of the predicted joint probabilities are given by

FDrs = Pr(Y1 = r, Y2 = s | x1)− Pr(Y1 = r, Y2 = s | x).

• The risk ratio (qi$rr) for each of the predicted joint probabilities are given by

RRrs =
Pr(Y1 = r, Y2 = s | x1)

Pr(Y1 = r, Y2 = s | x)
.

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yij(ti = 1)− E[Yij(ti = 0)]} for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yij(ti = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yij(ti = 1)− ̂Yij(ti = 0)

}
for j = 1, 2,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yij(ti = 0), the counterfactual pre-
dicted value of Yij for observations in the treatment group, under the assumption that everything stays
the same except that the treatment indicator is switched to ti = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "bprobit", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and obtain a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× 4 matrix of the in-sample fitted values.

– predictors: an n× 3 matrix of the linear predictors xjβj .

– residuals: an n× 3 matrix of the residuals.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× 2 matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× 3 matrix of the Pearson residuals.

• From the sim() output object s.out, you may extract quantities of interest arranged as arrays indexed
by simulation × quantity × x-observation (for more than one x-observation; otherwise the quantities
are matrices). Available quantities are:

– qi$ev: the simulated expected values (joint predicted probabilities) for the specified values of x.

– qi$pr: the simulated predicted outcomes drawn from a distribution defined by the joint predicted
probabilities.

– qi$fd: the simulated first difference in the predicted probabilities for the values specified in x and
x1.

– qi$rr: the simulated risk ratio in the predicted probabilities for given x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Bivariate Probit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The bivariate probit function is part of the VGAM package by Thomas Yee [62]. In addition, advanced
users may wish to refer to help(vglm) in the VGAM library. Additional documentation is available at
http://www.stat.auckland.ac.nz/˜ yee.Sample data are from [39]
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Chapter 28

ologit: Ordinal Logistic Regression for
Ordered Categorical Dependent
Variablest

28.1 ologit: Ordinal Logistic Regression for Ordered Categorical
Dependent Variables

Use the ordinal logit regression model if your dependent variable is ordered and categorical, either in the
form of integer values or character strings.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "ologit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

If Y takes discrete integer values, the as.factor() command will automatically order the values. If Y takes
on values composed of character strings, such as “strongly agree”, “agree”, and “disagree”, as.factor() will
order the values in the order in which they appear in Y. You will need to replace your dependent variable
with a factored variable prior to estimating the model through zelig(). See Example 1 for more information
on creating ordered factors.

Example

1. Creating An Ordered Dependent Variable

Load the sample data:

> data(sanction)

Create an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE,

+ levels = c("net gain", "little effect",

+ "modest loss", "major loss"))

Estimate the model:

> z.out <- zelig(ncost ~ mil + coop, model = "ologit", data = sanction)
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Set the explanatory variables to their observed values:

> x.out <- setx(z.out, fn = NULL)

Simulate fitted values given x.out and view the results:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

2. First Differences

Using the sample data sanction, estimate the empirical model and returning the coefficients:

> z.out <- zelig(as.factor(cost) ~ mil + coop, model = "ologit",

+ data = sanction)

> summary(z.out)

Set the explanatory variables to their means, with mil set to 0 (no military action in addition to
sanctions) in the baseline case and set to 1 (military action in addition to sanctions) in the alternative
case:

> x.low <- setx(z.out, mil = 0)

> x.high <- setx(z.out, mil = 1)

Generate simulated fitted values and first differences, and view the results:

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Model

Let Yi be the ordered categorical dependent variable for observation i that takes one of the integer values
from 1 to J where J is the total number of categories.

• The stochastic component begins with an unobserved continuous variable, Y ∗i , which follows the stan-
dard logistic distribution with a parameter µi,

Y ∗i ∼ Logit(y∗i | µi),

to which we add an observation mechanism

Yi = j if τj−1 ≤ Y ∗i ≤ τj for j = 1, . . . , J.

where τl (for l = 0, . . . , J) are the threshold parameters with τl < τm for all l < m and τ0 = −∞ and
τJ =∞.

• The systematic component has the following form, given the parameters τj and β, and the explanatory
variables xi:

Pr(Y ≤ j) = Pr(Y ∗ ≤ τj) =
exp(τj − xiβ)

1 + exp(τj − xiβ)
,

which implies:

πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
.
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Quantities of Interest

• The expected values (qi$ev) for the ordinal logit model are simulations of the predicted probabilities
for each category:

E(Y = j) = πj =
exp(τj − xiβ)

1 + exp(τj − xiβ)
− exp(τj−1 − xiβ)

1 + exp(τj−1 − xiβ)
,

given a draw of β from its sampling distribution.

• The predicted value (qi$pr) is drawn from the logit distribution described by µi, and observed as one
of J discrete outcomes.

• The difference in each of the predicted probabilities (qi$fd) is given by

Pr(Y = j | x1) − Pr(Y = j | x) for j = 1, . . . , J.

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1

nj

nj∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups,
and nj is the number of treated observations in category j.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1

nj

nj∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups,
and nj is the number of treated observations in category j.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "ologit", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– zeta: a vector containing the estimated class boundaries τj .

– deviance: the residual deviance.

– fitted.values: the n× J matrix of in-sample fitted values.

– df.residual: the residual degrees of freedom.

– edf: the effective degrees of freedom.

– Hessian: the Hessian matrix.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, and t-statistics.
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• From the sim() output object s.out, you may extract quantities of interest arranged as arrays. Avail-
able quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed by simulation
× quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the expected prob-
abilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values specified in x and
x1, indexed by simulation × quantity × x-observation (for more than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Ordinal Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The ordinal logit model is part of the MASS package by William N. Venable and Brian D. Ripley [57].
Advanced users may wish to refer to help(polr) as well as [43]. Sample data are from [39].
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Chapter 29

oprobit: Ordinal Probit Regression
for Ordered Categorical Dependent
Variables

29.1 oprobit: Ordinal Probit Regression for Ordered Categorical
Dependent Variables

Use the ordinal probit regression model if your dependent variables are ordered and categorical. They may
take on either integer values or character strings.

Syntax

> z.out <- zelig(as.factor(Y) ~ X1 + X2, model = "oprobit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

If Y takes discrete integer values, the as.factor() command will order it automatically. If Y takes on values
composed of character strings, such as “strongly agree”, “agree”, and “disagree”, as.factor() will order the
values in the order in which they appear in Y. You will need to replace your dependent variable with a
factored variable prior to estimating the model through zelig().

Example

1. Creating An Ordered Dependent Variable

Load the sample data:

> data(sanction)

Create an ordered dependent variable:

> sanction$ncost <- factor(sanction$ncost, ordered = TRUE,

+ levels = c("net gain", "little effect",

+ "modest loss", "major loss"))

Estimate the model:

> z.out <- zelig(ncost ~ mil + coop, model = "oprobit", data = sanction)

> summary(z.out)
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Set the explanatory variables to their observed values:

> x.out <- setx(z.out, fn = NULL)

Simulate fitted values given x.out and view the results:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)
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2. First Differences

Using the sample data sanction, let us estimate the empirical model and return the coefficients:

> z.out <- zelig(as.factor(cost) ~ mil + coop, model = "oprobit",

+ data = sanction)

> summary(z.out)

Set the explanatory variables to their means, with mil set to 0 (no military action in addition to
sanctions) in the baseline case and set to 1 (military action in addition to sanctions) in the alternative
case:
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> x.low <- setx(z.out, mil = 0)

> x.high <- setx(z.out, mil = 1)

Generate simulated fitted values and first differences, and view the results:

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

> plot(s.out)
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Model

Let Yi be the ordered categorical dependent variable for observation i that takes one of the integer values
from 1 to J where J is the total number of categories.

• The stochastic component is described by an unobserved continuous variable, Y ∗i , which follows the
normal distribution with mean µi and unit variance

Y ∗i ∼ N(µi, 1).
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The observation mechanism is

Yi = j if τj−1 ≤ Y ∗i ≤ τj for j = 1, . . . , J.

where τk for k = 0, . . . , J is the threshold parameter with the following constraints; τl < τm for all
l < m and τ0 = −∞ and τJ =∞.

Given this observation mechanism, the probability for each category, is given by

Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J

where Φ(µi) is the cumulative distribution function for the Normal distribution with mean µi and unit
variance.

• The systematic component is given by

µi = xiβ

where xi is the vector of explanatory variables and β is the vector of coefficients.

Quantities of Interest

• The expected values (qi$ev) for the ordinal probit model are simulations of the predicted probabilities
for each category:

E(Yi = j) = Pr(Yi = j) = Φ(τj | µi)− Φ(τj−1 | µi) for j = 1, . . . , J,

given draws of β from its posterior.

• The predicted value (qi$pr) is the observed value of Yi given the underlying standard normal distri-
bution described by µi.

• The difference in each of the predicted probabilities (qi$fd) is given by

Pr(Y = j | x1) − Pr(Y = j | x) for j = 1, . . . , J.

• In conditional prediction models, the average expected treatment effect (qi$att.ev) for the treatment
group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− E[Yi(ti = 0)]],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups,
and nj is the number of treated observations in category j.

• In conditional prediction models, the average predicted treatment effect (qi$att.pr) for the treatment
group in category j is

1

nj

nj∑
i:ti=1

[Yi(ti = 1)− ̂Yi(ti = 0)],

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups,
and nj is the number of treated observations in category j.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "oprobit", data), then you may examine the available information in
z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: the named vector of coefficients.

– fitted.values: an n× J matrix of the in-sample fitted values.

– predictors: an n× (J − 1) matrix of the linear predictors xiβj .

– residuals: an n× (J − 1) matrix of the residuals.

– zeta: a vector containing the estimated class boundaries.

– df.residual: the residual degrees of freedom.

– df.total: the total degrees of freedom.

– rss: the residual sum of squares.

– y: an n× J matrix of the dependent variables.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coef3: a table of the coefficients with their associated standard errors and t-statistics.

– cov.unscaled: the variance-covariance matrix.

– pearson.resid: an n× (m− 1) matrix of the Pearson residuals.

• From the sim() output object s.out, you may extract quantities of interest arranged as arrays. Avail-
able quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x, indexed by simulation
× quantity × x-observation (for more than one x-observation).

– qi$pr: the simulated predicted values drawn from the distribution defined by the expected prob-
abilities, indexed by simulation × x-observation.

– qi$fd: the simulated first difference in the predicted probabilities for the values specified in x and
x1, indexed by simulation × quantity × x-observation (for more than one x-observation).

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

How to Cite the Ordinal Probit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The ordinal probit function is part of the VGAM package by Thomas Yee [62]. In addition, advanced users
may wish to refer to help(vglm) in the VGAM library. Additional documentation is available at http://

www.stat.auckland.ac.nz/~\protect\kern+.1667em\relaxyeehttp://www.stat.auckland.ac.nz/ yee.Sample
data are from [39]
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Chapter 30

poisson.mixed: Mixed Effects Poisson
Regression

30.1 poisson.mixed: Mixed effects poisson Regression

Use generalized multi-level linear regression if you have covariates that are grouped according to one or
more classification factors. Poisson regression applies to dependent variables that represent the number of
independent events that occur during a fixed period of time.

While generally called multi-level models in the social sciences, this class of models is often referred to as
mixed-effects models in the statistics literature and as hierarchical models in a Bayesian setting. This general
class of models consists of linear models that are expressed as a function of both fixed effects, parameters
corresponding to an entire population or certain repeatable levels of experimental factors, and random effects,
parameters corresponding to individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="poisson.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="poisson.mixed")

Inputs

zelig() takes the following arguments for mixed:

• formula: a two-sided linear formula object describing the systematic component of the model, with
the response on the left of a ˜ operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1 + ... + zn | g) with z1 +

... + zn specifying the model for the random effects and g the grouping structure. Random intercept
terms are included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear formula object
describing the systematic component of the model, with the repsonse on the left of a˜operator and the
fixed effects terms, separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1, gamma | g) with z1 specifying the individual level model for the random effects,
g the grouping structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on the right side of
a˜operator. The model is specified with the notation tag(w1 + ... + wn | g) with w1 + ... +

wn specifying the group level model and g the grouping structure.
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Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

• data: An optional data frame containing the variables named in formula. By default, the variables
are taken from the environment from which zelig() is called.

• na.action: A function that indicates what should happen when the data contain NAs. The default
action (na.fail) causes zelig() to print an error message and terminate if there are any incomplete
observations.

Additionally, users may with to refer to lmer in the package lme4 for more information, including control
parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example

Attach sample data:

> data(homerun)

Estimate model:

> z.out1 <- zelig(homeruns ~ player + tag(player - 1 | month), data=homerun, model="poisson.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values:

> x.out <- setx(z.out1)

Simulate draws using the default bootstrap method and view simulated quantities of interest:

> s.out1 <- sim(z.out1, x=x.out)

> summary(s.out1)

Mixed effects Poisson Regression Model

Let Yij be the number of independent events that occur during a fixed time period, realized for observation
j in group i as yij , which takes any non-negative integer as its value, for i = 1, . . . ,M , j = 1, . . . , ni.

• The stochastic component is described by a Poisson distribution with mean and variance parameter
λij .

Yij ∼ Poisson(yij |λij) =
exp(−λij)λ

yij
ij

yij !

where

yij = 0, 1, . . .
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• The q-dimensional vector of random effects, bi, is restricted to be mean zero, and therefore is completely
characterized by the variance covarance matrix Ψ, a (q × q) symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

• The systematic component is

λij ≡ exp(Xijβ + Zijbi)

where Xij is the (ni×p×M) array of known fixed effects explanatory variables, β is the p-dimensional
vector of fixed effects coefficients, Zij is the (ni × q ×M) array of known random effects explanatory
variables and bi is the q-dimensional vector of random effects.

Quantities of Interest

• The predicted values (qi$pr) are draws from the poisson distribution defined by mean λij , for

λij = exp(Xijβ + Zijbi)

given Xij and Zij and simulations of of β and bi from their posterior distributions. The estimated
variance covariance matrices are taken as correct and are themselves not simulated.

• The expected values (qi$ev) is the mean of simulations of the stochastic component given draws of β
from its posterior:

E(Yij |Xij) = λij = exp(Xijβ).

• The first difference (qi$fd) is given by the difference in expected values, conditional on Xij and X ′ij ,
representing different values of the explanatory variables.

FD(Yij |Xij , X
′
ij) = E(Yij |Xij)− E(Yij |X ′ij)

• In conditional prediction models, the average predicted treatment effect (qi$att.pr) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0)
groups. Variation in the simulations is due to uncertainty in simulating Yij(tij = 0), the counterfactual
predicted value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

• In conditional prediction models, the average expected treatment effect (qi$att.ev) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0) groups.
Variation in the simulations is due to uncertainty in simulating E[Yij(tij = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

173



Output Values

The output of each Zelig command contains useful information which you may view. You may examine
the available information in z.out by using slotNames(z.out), see the fixed effect coefficients by using
summary(z.out)@coefs, and a default summary of information through summary(z.out). Other elements
available through the operator are listed below.

• From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

• From the sim() output stored in s.out, you may extract quantities of interest stored in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Multi-level Poisson Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Mixed effects poisson regression is part of lme4 package by Douglas M. Bates [3].
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Chapter 31

gamma.mixed: Mixed Effects Gamma
Regression

31.1 gamma.mixed: Mixed effects gamma regression

Use generalized multi-level linear regression if you have covariates that are grouped according to one or more
classification factors. Gamma regression models a continuous, positive dependent variable.

While generally called multi-level models in the social sciences, this class of models is often referred to as
mixed-effects models in the statistics literature and as hierarchical models in a Bayesian setting. This general
class of models consists of linear models that are expressed as a function of both fixed effects, parameters
corresponding to an entire population or certain repeatable levels of experimental factors, and random effects,
parameters corresponding to individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="gamma.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, delta | g),

delta= ~ tag(w1 + w2 | g)), data=mydata, model="gamma.mixed")

Inputs

zelig() takes the following arguments for mixed:

• formula: a two-sided linear formula object describing the systematic component of the model, with
the response on the left of a ˜ operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1 + ... + zn | g) with z1 +

... + zn specifying the model for the random effects and g the grouping structure. Random intercept
terms are included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear formula object
describing the systematic component of the model, with the repsonse on the left of a˜operator and the
fixed effects terms, separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1, delta | g) with z1 specifying the individual level model for the random effects,
g the grouping structure and delta references the second equation in the list. The delta equation is
one-sided linear formula object with the group level model for the random effects on the right side of
a˜operator. The model is specified with the notation tag(w1 + ... + wn | g) with w1 + ... +

wn specifying the group level model and g the grouping structure.
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Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

• data: An optional data frame containing the variables named in formula. By default, the variables
are taken from the environment from which zelig() is called.

• method: a character string. The criterion is always the log-likelihood but this criterion does not have
a closed form expression and must be approximated. The default approximation is "PQL" or penalized
quasi-likelihood. Alternatives are "Laplace" or "AGQ" indicating the Laplacian and adaptive Gaussian
quadrature approximations respectively.

• na.action: A function that indicates what should happen when the data contain NAs. The default
action (na.fail) causes zelig() to print an error message and terminate if there are any incomplete
observations.

Additionally, users may with to refer to lmer in the package lme4 for more information, including control
parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(coalition2)

Estimate model using optional arguments to specify approximation method for the log-likelihood, and
the log link function for the Gamma family:

> z.out1 <- zelig(duration ~ invest + fract + polar + numst2 + crisis + tag(1 | country), data=coalition2, model="gamma.mixed", method="PQL",family=Gamma(link=log))

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set the baseline values (with the ruling coalition in the minority) and the alternative values (with the
ruling coalition in the majority) for X:

> x.high <- setx(z.out1, numst2 = 1)

> x.low <- setx(z.out1, numst2 = 0)

Simulate expected values (qi$ev) and first differences(qi$fd):

> s.out1 <- sim(z.out1, x=x.high, x1=x.low)

> summary(s.out1)
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Mixed effects gamma regression Model

Let Yij be the continuous, positive dependent variable, realized for observation j in group i as yij , for
i = 1, . . . ,M , j = 1, . . . , ni.

• The stochastic component is described by a Gamma model with scale parameter α.

Yij ∼ Gamma(yij |λij , α)

where

Gamma(yij |λij , α) =
1

αλijΓλij
y
λij−1
ij exp(−{yij

α
})

for α, λij , yij > 0.

• The q-dimensional vector of random effects, bi, is restricted to be mean zero, and therefore is completely
characterized by the variance covarance matrix Ψ, a (q × q) symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

• The systematic component is

λij ≡
1

Xijβ + Zijbi

where Xij is the (ni×p×M) array of known fixed effects explanatory variables, β is the p-dimensional
vector of fixed effects coefficients, Zij is the (ni × q ×M) array of known random effects explanatory
variables and bi is the q-dimensional vector of random effects.

Quantities of Interest

• The predicted values (qi$pr) are draws from the gamma distribution for each given set of parameters
(α, λij), for

λij =
1

Xijβ + Zijbi

given Xij and Zij and simulations of of β and bi from their posterior distributions. The estimated
variance covariance matrices are taken as correct and are themselves not simulated.

• The expected values (qi$ev) are simulations of the mean of the stochastic component given draws of
α, β from their posteriors:

E(Yij |Xij) = αλij =
α

Xijβ
.

• The first difference (qi$fd) is given by the difference in expected values, conditional on Xij and X ′ij ,
representing different values of the explanatory variables.

FD(Yij |Xij , X
′
ij) = E(Yij |Xij)− E(Yij |X ′ij)

• In conditional prediction models, the average predicted treatment effect (qi$att.pr) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0)
groups. Variation in the simulations is due to uncertainty in simulating Yij(tij = 0), the counterfactual
predicted value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.
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• In conditional prediction models, the average expected treatment effect (qi$att.ev) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0) groups.
Variation in the simulations is due to uncertainty in simulating E[Yij(tij = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You may examine
the available information in z.out by using slotNames(z.out), see the fixed effect coefficients by using
summary(z.out)@coefs, and a default summary of information through summary(z.out). Other elements
available through the operator are listed below.

• From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

• From the sim() output stored in s.out, you may extract quantities of interest stored in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Multi-level Gamma Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Mixed effects gamma regression is part of lme4 package by Douglas M. Bates [3].
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Chapter 32

logit.mixed: Mixed Effects Logistic
Regression

32.1 logit.mixed: Mixed effects logistic Regression

Use generalized multi-level linear regression if you have covariates that are grouped according to one or more
classification factors. The logit model is appropriate when the dependent variable is dichotomous.

While generally called multi-level models in the social sciences, this class of models is often referred to as
mixed-effects models in the statistics literature and as hierarchical models in a Bayesian setting. This general
class of models consists of linear models that are expressed as a function of both fixed effects, parameters
corresponding to an entire population or certain repeatable levels of experimental factors, and random effects,
parameters corresponding to individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="logit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="logit.mixed")

Inputs

zelig() takes the following arguments for mixed:

• formula: a two-sided linear formula object describing the systematic component of the model, with
the response on the left of a ˜ operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1 + ... + zn | g) with z1 +

... + zn specifying the model for the random effects and g the grouping structure. Random intercept
terms are included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear formula object
describing the systematic component of the model, with the repsonse on the left of a˜operator and the
fixed effects terms, separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1, gamma | g) with z1 specifying the individual level model for the random effects,
g the grouping structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on the right side of
a˜operator. The model is specified with the notation tag(w1 + ... + wn | g) with w1 + ... +

wn specifying the group level model and g the grouping structure.
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Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

• data: An optional data frame containing the variables named in formula. By default, the variables
are taken from the environment from which zelig() is called.

• na.action: A function that indicates what should happen when the data contain NAs. The default
action (na.fail) causes zelig() to print an error message and terminate if there are any incomplete
observations.

Additionally, users may with to refer to lmer in the package lme4 for more information, including control
parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 | state), data=voteincome, model="logit.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low (20th percentile)
values for education:

> x.high <- setx(z.out1, education=quantile(voteincome$education, 0.8))

> x.low <- setx(z.out1, education=quantile(voteincome$education, 0.2))

Generate first differences for the effect of high versus low education on voting:

> s.out1 <- sim(z.out1, x=x.high, x1=x.low)

> summary(s.out1)

Mixed effects Logistic Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i as yij which takes the value
of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

• The stochastic component is described by a Bernoulli distribution with mean vector πij .

Yij ∼ Bernoulli(yij |πij) = π
yij
ij (1− πij)1−yij

where
πij = Pr(Yij = 1)
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• The q-dimensional vector of random effects, bi, is restricted to be mean zero, and therefore is completely
characterized by the variance covarance matrix Ψ, a (q × q) symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

• The systematic component is

πij ≡
1

1 + exp(−(Xijβ + Zijbi))

where Xij is the (ni×p×M) array of known fixed effects explanatory variables, β is the p-dimensional
vector of fixed effects coefficients, Zij is the (ni × q ×M) array of known random effects explanatory
variables and bi is the q-dimensional vector of random effects.

Quantities of Interest

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value, πij for

πij =
1

1 + exp(−(Xijβ + Zijbi))

given Xij and Zij and simulations of of β and bi from their posterior distributions. The estimated
variance covariance matrices are taken as correct and are themselves not simulated.

• The expected values (qi$ev) are simulations of the predicted probability of a success given draws of β
from its posterior:

E(Yij |Xij) = πij =
1

1 + exp(−Xijβ)
.

• The first difference (qi$fd) is given by the difference in predicted probabilities, conditional on Xij and
X ′ij , representing different values of the explanatory variables.

FD(Yij |Xij , X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′ij)

• The risk ratio (qi$rr) is defined as

RR(Yij |Xij , X
′
ij) =

Pr(Yij = 1|Xij)

Pr(Yij = 1|X ′ij)

• In conditional prediction models, the average predicted treatment effect (qi$att.pr) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0)
groups. Variation in the simulations is due to uncertainty in simulating Yij(tij = 0), the counterfactual
predicted value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

• In conditional prediction models, the average expected treatment effect (qi$att.ev) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0) groups.
Variation in the simulations is due to uncertainty in simulating E[Yij(tij = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. You may examine
the available information in z.out by using slotNames(z.out), see the fixed effect coefficients by using
summary(z.out)@coefs, and a default summary of information through summary(z.out). Other elements
available through the operator are listed below.

• From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

• From the sim() output stored in s.out, you may extract quantities of interest stored in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Multi-level Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Mixed effects logistic regression is part of lme4 package by Douglas M. Bates [3].
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Chapter 33

ls.mixed: Mixed Effects Least Squares
Regression

33.1 ls.mixed: Mixed effects Linear Regression

Use multi-level linear regression if you have covariates that are grouped according to one or more classification
factors and a continuous dependent variable.

While generally called multi-level models in the social sciences, this class of models is often referred to as
mixed-effects models in the statistics literature and as hierarchical models in a Bayesian setting. This general
class of models consists of linear models that are expressed as a function of both fixed effects, parameters
corresponding to an entire population or certain repeatable levels of experimental factors, and random effects,
parameters corresponding to individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="lm.multi")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="lm.multi")

Inputs

zelig() takes the following arguments for multi:

• formula: a two-sided linear formula object describing the systematic component of the model, with
the response on the left of a ˜ operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1 + ... + zn | g) with z1 +

... + zn specifying the model for the random effects and g the grouping structure. Random intercept
terms are included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear formula object
describing the systematic component of the model, with the repsonse on the left of a˜operator and the
fixed effects terms, separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1, gamma | g) with z1 specifying the individual level model for the random effects,
g the grouping structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on the right side of
a˜operator. The model is specified with the notation tag(w1 + ... + wn | g) with w1 + ... +

wn specifying the group level model and g the grouping structure.
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Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

• data: An optional data frame containing the variables named in formula. By default, the variables
are taken from the environment from which zelig() is called.

• family: A GLM family, see glm and family in the stats package. If family is missing then a linear
mixed model is fit; otherwise a generalized linear mixed model is fit. In the later case only gaussian

family with "log" link is supported at the moment.

• na.action: A function that indicates what should happen when the data contain NAs. The default
action (na.fail) causes zelig() to print an error message and terminate if there are any incomplete
observations.

Additionally, users may wish to refer to lmer in the package lme4 for more information, including control
parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(income ~ education + age + female + tag(1 | state), data=voteincome, model="ls.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low (20th percentile)
values for education:

> x.high <- setx(z.out1, education=quantile(voteincome$education, 0.8))

> x.low <- setx(z.out1, education=quantile(voteincome$education, 0.2))

Generate first differences for the effect of high versus low education on income:

> s.out1 <- sim(z.out1, x=x.high, x1=x.low)

> summary(s.out1)

> plot(s.out1)
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Mixed effects linear regression model

Let Yij be the continuous dependent variable, realized for observation j in group i as yij , for i = 1, . . . ,M ,
j = 1, . . . , ni.

• The stochastic component is described by a univariate normal model with a vector of means µij and
scalar variance σ2.

Yij ∼ Normal(yij |µij , σ2)

• The q-dimensional vector of random effects, bi, is restricted to be mean zero, and therefore is completely
characterized by the variance covarance matrix Ψ, a (q × q) symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

• The systematic component is

µij ≡ Xijβ + Zijbi

where Xij is the (ni×p×M) array of known fixed effects explanatory variables, β is the p-dimensional
vector of fixed effects coefficients, Zij is the (ni × q ×M) array of known random effects explanatory
variables and bi is the q-dimensional vector of random effects.
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Quantities of Interest

• The predicted values (qi$pr) are draws from the normal distribution defined by mean µij and variance
σ2,

µij = Xijβ + Zijbi

given Xij and Zij and simulations of β and bi from their posterior distributions. The estimated variance
covariance matrices are taken as correct and are themselves not simulated.

• The expected values (qi$ev) are averaged over the stochastic components and are given by

E(Yij |Xij) = Xijβ.

• The first difference (qi$fd) is given by the difference in expected values, conditional on Xij and X ′ij ,
representing different values of the explanatory variables.

FD(Yij |Xij , X
′
ij) = E(Yij |Xij)− E(Yij |X ′ij)

• In conditional prediction models, the average predicted treatment effect (qi$att.pr) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0)
groups. Variation in the simulations is due to uncertainty in simulating Yij(tij = 0), the counterfactual
predicted value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

• In conditional prediction models, the average expected treatment effect (qi$att.ev) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0) groups.
Variation in the simulations is due to uncertainty in simulating E[Yij(tij = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

• If "log" link is used, expected values are computed as above and then exponentiated, while predicted
values are draws from the log-normal distribution whose logarithm has mean and variance equal to µij
and σ2, respectively.

Output Values

The output of each Zelig command contains useful information which you may view. You may examine
the available information in z.out by using slotNames(z.out), see the fixed effect coefficients by using
summary(z.out)@coefs, and a default summary of information through summary(z.out). Other elements
available through the operator are listed below.

• From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.
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• From the sim() output stored in s.out, you may extract quantities of interest stored in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Multi-level Least Squares Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Mixed effects linear regression is part of lme4 package by Douglas M. Bates [3].
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Chapter 34

probit.mixed: Mixed Effects Poisson
Regression

34.1 probit.mixed: Mixed effects probit Regression

Use generalized multi-level linear regression if you have covariates that are grouped according to one or more
classification factors. The probit model is appropriate when the dependent variable is dichotomous.

While generally called multi-level models in the social sciences, this class of models is often referred to as
mixed-effects models in the statistics literature and as hierarchical models in a Bayesian setting. This general
class of models consists of linear models that are expressed as a function of both fixed effects, parameters
corresponding to an entire population or certain repeatable levels of experimental factors, and random effects,
parameters corresponding to individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="probit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="probit.mixed")

Inputs

zelig() takes the following arguments for mixed:

• formula: a two-sided linear formula object describing the systematic component of the model, with
the response on the left of a ˜ operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1 + ... + zn | g) with z1 +

... + zn specifying the model for the random effects and g the grouping structure. Random intercept
terms are included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear formula object
describing the systematic component of the model, with the repsonse on the left of a˜operator and the
fixed effects terms, separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1, gamma | g) with z1 specifying the individual level model for the random effects,
g the grouping structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on the right side of
a˜operator. The model is specified with the notation tag(w1 + ... + wn | g) with w1 + ... +

wn specifying the group level model and g the grouping structure.
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Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:

• data: An optional data frame containing the variables named in formula. By default, the variables
are taken from the environment from which zelig() is called.

• na.action: A function that indicates what should happen when the data contain NAs. The default
action (na.fail) causes zelig() to print an error message and terminate if there are any incomplete
observations.

Additionally, users may with to refer to lmer in the package lme4 for more information, including control
parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 | state), data=voteincome, model="probit.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low (20th percentile)
values for education:

> x.high <- setx(z.out1, education=quantile(voteincome$education, 0.8))

> x.low <- setx(z.out1, education=quantile(voteincome$education, 0.2))

Generate first differences for the effect of high versus low education on voting:

> s.out1 <- sim(z.out1, x=x.high, x1=x.low)

> summary(s.out1)

Mixed effects probit Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i as yij which takes the value
of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

• The stochastic component is described by a Bernoulli distribution with mean vector πij .

Yij ∼ Bernoulli(yij |πij) = π
yij
ij (1− πij)1−yij

where

πij = Pr(Yij = 1)
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• The q-dimensional vector of random effects, bi, is restricted to be mean zero, and therefore is completely
characterized by the variance covarance matrix Ψ, a (q × q) symmetric positive semi-definite matrix.

bi ∼ Normal(0,Ψ)

• The systematic component is
πij ≡ Φ(Xijβ + Zijbi)

where Φ(µ) is the cumulative distribution function of the Normal distribution with mean 0 and unit
variance, and
where Xij is the (ni×p×M) array of known fixed effects explanatory variables, β is the p-dimensional
vector of fixed effects coefficients, Zij is the (ni × q ×M) array of known random effects explanatory
variables and bi is the q-dimensional vector of random effects.

Quantities of Interest

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value, πij for

πij = Φ(Xijβ + Zijbi)

given Xij and Zij and simulations of of β and bi from their posterior distributions. The estimated
variance covariance matrices are taken as correct and are themselves not simulated.

• The expected values (qi$ev) are simulations of the predicted probability of a success given draws of β
from its posterior:

E(Yij |Xij) = πij = Φ(Xijβ).

• The first difference (qi$fd) is given by the difference in predicted probabilities, conditional on Xij and
X ′ij , representing different values of the explanatory variables.

FD(Yij |Xij , X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′ij)

• The risk ratio (qi$rr) is defined as

RR(Yij |Xij , X
′
ij) =

Pr(Yij = 1|Xij)

Pr(Yij = 1|X ′ij)

• In conditional prediction models, the average predicted treatment effect (qi$att.pr) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0)
groups. Variation in the simulations is due to uncertainty in simulating Yij(tij = 0), the counterfactual
predicted value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.

• In conditional prediction models, the average expected treatment effect (qi$att.ev) for the treatment
group is given by

1∑M
i=1

∑ni
j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control (tij = 0) groups.
Variation in the simulations is due to uncertainty in simulating E[Yij(tij = 0)], the counterfactual
expected value of Yij for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to tij = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. You may examine
the available information in z.out by using slotNames(z.out), see the fixed effect coefficients by using
summary(z.out)@coefs, and a default summary of information through summary(z.out). Other elements
available through the operator are listed below.

• From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.

– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

• From the sim() output stored in s.out, you may extract quantities of interest stored in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Multi-level Probit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Mixed effects probit regression is part of lme4 package by Douglas M. Bates [3].
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Chapter 35

gamma.survey: Survey-Weighted
Gamma Regression for Continuous,
Positive Dependent Variables

35.1 gamma.survey: Survey-Weighted Gamma Regression for Con-
tinuous, Positive Dependent Variables

The survey-weighted Gamma regression model is appropriate for survey data obtained using complex sam-
pling techniques, such as stratified random or cluster sampling (e.g., not simple random sampling). Like
the conventional Gamma regression models (see Section ??), survey-weighted Gamma regression specifies a
continuous, positive dependent variable as function of a set of explanatory variables. The survey-weighted
Gamma model reports estimates of model parameters identical to conventional Gamma estimates, but uses
information from the survey design to correct variance estimates.

The gamma.survey model accommodates three common types of complex survey data. Each method
listed here requires selecting specific options which are detailed in the “Additional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each observation. For
example, if a survey intentionally over-samples a particular type of case, weights can be used to correct
for the over-representation of that type of case in the dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the population. For each
stratum or cluster, this is computed as the number of observations in the sample drawn from that
group divided by the number of observations in the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that identify the
strata or cluster from which observations are drawn. For stratified random sampling designs, observa-
tions may be nested in different strata. There are two ways to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stratum or cluster
from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sampling weights from
the data.

3. Replication weights: To preserve the anonymity of survey participants, some surveys exclude strata
and cluster ids from the public data and instead release only pre-computed replicate weights.
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Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section 7.1), survey-weighted Gamma models accept the
following optional inputs:

1. Datasets that include survey weights:.

• probs: An optional formula or numerical vector specifying each case’s probability weight, the
probability that the case was selected. Probability weights need not (and, in most cases, will not)
sum to one. Cases with lower probability weights are weighted more heavily in the computation
of model coefficients.

• weights: An optional numerical vector specifying each case’s sample weight, the inverse of the
probability that the case was selected. Sampling weights need not (and, in most cases, will not)
sum to one. Cases with higher sampling weights are weighted more heavily in the computation of
model coefficients.

2. Datasets that include strata/cluster identifiers:

• ids: An optional formula or numerical vector identifying the cluster from which each observation
was drawn (ordered from largest level to smallest level). For survey designs that do not involve
cluster sampling, ids defaults to NULL.

• fpc: An optional numerical vector identifying each case’s frequency weight, the total number of
units in the population from which each observation was sampled.

• strata: An optional formula or vector identifying the stratum from which each observation was
sampled. Entries may be numerical, logical, or strings. For survey designs that do not involve
cluster sampling, strata defaults to NULL.

• nest: An optional logical value specifying whether primary sampling unites (PSUs) have non-
unique ids across multiple strata. nest=TRUE is appropriate when PSUs reuse the same identifiers
across strata. Otherwise, nest defaults to FALSE.

• check.strata: An optional input specifying whether to check that clusters are nested in strata.
If check.strata is left at its default, !nest, the check is not performed. If check.strata is
specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

• repweights: A formula or matrix specifying replication weights, numerical vectors of weights
used in a process in which the sample is repeatedly re-weighted and parameters are re-estimated
in order to compute the variance of the model parameters.

• type: A string specifying the type of replication weights being used. This input is required if
replicate weights are specified. The following types of replication weights are recognized: "BRR",
"Fay", "JK1", "JKn", "bootstrap", or "other".

• weights: An optional vector or formula specifying each case’s sample weight, the inverse of the
probability that the case was selected. If a survey includes both sampling weights and replicate
weights separately for the same survey, both should be included in the model specification. In these
cases, sampling weights are used to correct potential biases in in the computation of coefficients
and replication weights are used to compute the variance of coefficient estimates.
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• combined.weights: An optional logical value that should be specified as TRUE if the replicate
weights include the sampling weights. Otherwise, combined.weights defaults to FALSE.

• rho: An optional numerical value specifying a shrinkage factor for replicate weights of type "Fay".

• bootstrap.average: An optional numerical input specifying the number of iterations over which
replicate weights of type "bootstrap" were averaged. This input should be left as NULL for
"bootstrap" weights that were not were created by averaging.

• scale: When replicate weights are included, the variance is computed as the sum of squared
deviations of the replicates from their mean. scale is an optional overall multiplier for the
standard deviations.

• rscale: Like scale, rscale specifies an optional vector of replicate-specific multipliers for the
squared deviations used in variance computation.

• fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc is an optional
numerical vector (with one entry for each replicate) designating the replicates’ finite population
corrections.

• fpctype: When a finite population correction is included as an fpc input, fpctype is a required
input specifying whether the input to fpc is a sampling fraction (fpctype="fraction") or a
direct correction (fpctype="correction").

• return.replicates: An optional logical value specifying whether the replicates should be re-
turned as a component of the output. return.replicates defaults to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package="survey")

Suppose that a dataset included a positive and continuous measure of public schools’ performance
(api00), a measure of the percentage of students at each school who receive subsidized meals (meals), an
indicator for whether each school holds classes year round (year.rnd), and sampling weights computed
by the survey house (pw). Estimate a model that regresses school performance on the meals and
year.rnd variables:

> z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey",

+ weights=~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th percentile) and
low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals=quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals=quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children receiving subsidized
meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:
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> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example excluded sam-
pling weights but made other details about the survey design available. A user can still estimate a
model without sampling weights that instead uses inputs that identify the stratum and/or cluster to
which each observation belongs and the size of the finite population from which each observation was
drawn.

Continuing the example above, suppose the survey house drew at random a fixed number of elementary
schools, a fixed number of middle schools, and a fixed number of high schools. If the variable stype

is a vector of characters ("E" for elementary schools, "M" for middle schools, and "H" for high schools)
that identifies the type of school each case represents and fpc is a numerical vector that identifies for
each case the total number of schools of the same type in the population, then the user could estimate
the following model:

> z.out2 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", strata=~stype, fpc=~fpc, data = apistrat)

Summarize the regression output:

> summary(z.out2)
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The coefficient estimates for this example are identical to the point estimates in the first example,
when pre-existing sampling weights were used. When sampling weights are omitted, they are estimated
automatically for "gamma.survey" models based on the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard error estimates
are lower in this example than in the previous example, in which the user omitted variables pertaining
to the details of the complex survey design.

3. A dataset that includes replication weights:

Survey houses sometimes supply replicate weights (in lieu of details about the survey design). Suppose
that the survey house that published these school data withheld strata/cluster identifiers and instead
published replication weights. For the sake of illustrating how replicate weights can be used as inputs
in gamma.survey models, create a set of jack-knife (JK1) replicate weights:

> jk1reps <- jk1weights(psu=apistrat$dnum)

Again, estimate a model that regresses school performance on the meals and year.rnd variables, using
the JK1 replicate weights in jk1reps to compute standard errors:

> z.out3 <- zelig(api00 ~ meals + yr.rnd, model = "gamma.survey", data = apistrat,

+ repweights=jk1reps$weights, type="JK1")

Summarize the regression coefficients:

> summary(z.out3)

Set the explanatory variable meals at its 20th and 80th quantiles:

> x.low <- setx(z.out3, meals= quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out3, meals= quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of poverty on school perfor-
mance:

> s.out3 <- sim(z.out3, x=x.high, x1=x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

• The Gamma distribution with scale parameter α has a stochastic component :

Y ∼ Gamma(yi | λi, α)

f(y) =
1

αλi Γλi
yλi−1
i exp−

{yi
α

}
for α, λi, yi > 0.

• The systematic component is given by

λi =
1

xiβ

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

 n∑
i=1

(1− πi)
π2
i

(Xi(Yi − µi))′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)
πiπjπij

(Xi(Yi − µi))′(Xj(Yj − µj))

 Σ̂
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where πi is the probability of case i being sampled, Xi is a vector of the values of the explanatory variables
for case i, Yi is value of the dependent variable for case i, µ̂i is the predicted value of the dependent variable
for case i based on the linear model estimates, and Σ̂ is the conventional variance-covariance matrix in a
parametric glm. This statistic is derived from the method for estimating the variance of sums described in
[4] and the Horvitz-Thompson estimator of the variance of a sum described in [8].

When replicate weights are used, the model is re-estimated for each set of replicate weights, and the
variance of each parameter is estimated by summing the squared deviations of the replicates from their
mean.

Quantities of Interest

• The expected values (qi$ev) are simulations of the mean of the stochastic component given draws of
α and β from their posteriors:

E(Y ) = αλi.

• The predicted values (qi$pr) are draws from the gamma distribution for each given set of parameters
(α, λi).

• If x1 is specified, sim() also returns the differences in the expected values (qi$fd),

E(Y | x1)− E(Y | x)

.

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "gamma.survey", data), then you may examine the available in-
formation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution defined by (α, λi).

– qi$fd: the simulated first difference in the expected values for the specified values in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

When users estimate gamma.survey models with replicate weights in Zelig, an object called .survey.prob.weights

is created in the global environment. Zelig will over-write any existing object with that name, and users are
therefore advised to re-name any object called .survey.prob.weights before using gamma.survey models
in Zelig.

How to Cite the Gamma Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part of the survey pack-
age by Thomas Lumley. Users may wish to refer to the help files for the three functions that Zelig draws upon
when estimating survey-weighted models, namely, help(svyglm), help(svydesign), and help(svrepdesign).
The Gamma model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43].
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Chapter 36

normal.survey: Survey-Weighted
Normal Regression for Continuous
Dependent Variables

36.1 normal.survey: Survey-Weighted Normal Regression for Con-
tinuous Dependent Variables

The survey-weighted Normal regression model is appropriate for survey data obtained using complex sampling
techniques, such as stratified random or cluster sampling (e.g., not simple random sampling). Like the least
squares and Normal regression models (see Section 14.1 and Section 16.1), survey-weighted Normal regression
specifies a continuous dependent variable as a linear function of a set of explanatory variables. The survey-
weighted normal model reports estimates of model parameters identical to least squares or Normal regression
estimates, but uses information from the survey design to correct variance estimates.

The normal.survey model accommodates three common types of complex survey data. Each method
listed here requires selecting specific options which are detailed in the “Additional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each observation. For
example, if a survey intentionally over-samples a particular type of case, weights can be used to correct
for the over-representation of that type of case in the dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the population. For each
stratum or cluster, this is computed as the number of observations in the sample drawn from that
group divided by the number of observations in the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that identify the
strata or cluster from which observations are drawn. For stratified random sampling designs, observa-
tions may be nested in different strata. There are two ways to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stratum or cluster
from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sampling weights from
the data.

3. Replication weights: To preserve the anonymity of survey participants, some surveys exclude strata
and cluster ids from the public data and instead release only pre-computed replicate weights.
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Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section 7.1), survey-weighted Normal models accept the
following optional inputs:

1. Datasets that include survey weights:

• probs: An optional formula or numerical vector specifying each case’s probability weight, the
probability that the case was selected. Probability weights need not (and, in most cases, will not)
sum to one. Cases with lower probability weights are weighted more heavily in the computation
of model coefficients.

• weights: An optional numerical vector specifying each case’s sample weight, the inverse of the
probability that the case was selected. Sampling weights need not (and, in most cases, will not)
sum to one. Cases with higher sampling weights are weighted more heavily in the computation of
model coefficients.

2. Datasets that include strata/cluster identifiers:

• ids: An optional formula or numerical vector identifying the cluster from which each observation
was drawn (ordered from largest level to smallest level). For survey designs that do not involve
cluster sampling, ids defaults to NULL.

• fpc: An optional numerical vector identifying each case’s frequency weight, the total number of
units in the population from which each observation was sampled.

• strata: An optional formula or vector identifying the stratum from which each observation was
sampled. Entries may be numerical, logical, or strings. For survey designs that do not involve
cluster sampling, strata defaults to NULL.

• nest: An optional logical value specifying whether primary sampling unites (PSUs) have non-
unique ids across multiple strata. nest=TRUE is appropriate when PSUs reuse the same identifiers
across strata. Otherwise, nest defaults to FALSE.

• check.strata: An optional input specifying whether to check that clusters are nested in strata.
If check.strata is left at its default, !nest, the check is not performed. If check.strata is
specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

• repweights: A formula or matrix specifying replication weights, numerical vectors of weights
used in a process in which the sample is repeatedly re-weighted and parameters are re-estimated
in order to compute the variance of the model parameters.

• type: A string specifying the type of replication weights being used. This input is required if
replicate weights are specified. The following types of replication weights are recognized: "BRR",
"Fay", "JK1", "JKn", "bootstrap", or "other".

• weights: An optional vector or formula specifying each case’s sample weight, the inverse of the
probability that the case was selected. If a survey includes both sampling weights and replicate
weights separately for the same survey, both should be included in the model specification. In these
cases, sampling weights are used to correct potential biases in in the computation of coefficients
and replication weights are used to compute the variance of coefficient estimates.
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• combined.weights: An optional logical value that should be specified as TRUE if the replicate
weights include the sampling weights. Otherwise, combined.weights defaults to FALSE.

• rho: An optional numerical value specifying a shrinkage factor for replicate weights of type "Fay".

• bootstrap.average: An optional numerical input specifying the number of iterations over which
replicate weights of type "bootstrap" were averaged. This input should be left as NULL for
"bootstrap" weights that were not were created by averaging.

• scale: When replicate weights are included, the variance is computed as the sum of squared
deviations of the replicates from their mean. scale is an optional overall multiplier for the
standard deviations.

• rscale: Like scale, rscale specifies an optional vector of replicate-specific multipliers for the
squared deviations used in variance computation.

• fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc is an optional
numerical vector (with one entry for each replicate) designating the replicates’ finite population
corrections.

• fpctype: When a finite population correction is included as an fpc input, fpctype is a required
input specifying whether the input to fpc is a sampling fraction (fpctype="fraction") or a
direct correction (fpctype="correction").

• return.replicates: An optional logical value specifying whether the replicates should be re-
turned as a component of the output. return.replicates defaults to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package="survey")

Suppose that a dataset included a continuous measure of public schools’ performance (api00), a mea-
sure of the percentage of students at each school who receive subsidized meals (meals), an indicator
for whether each school holds classes year round (year.rnd), and sampling weights computed by the
survey house (pw). Estimate a model that regresses school performance on the meals and year.rnd

variables:

> z.out1 <- zelig(api00 ~ meals + yr.rnd, model = "normal.survey", weights=~pw,

+ data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th percentile) and
low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals=quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals=quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children receiving subsidized
meals on academic performance:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:
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> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example excluded sam-
pling weights but made other details about the survey design available. A user can still estimate a
model without sampling weights that instead uses inputs that identify the stratum and/or cluster to
which each observation belongs and the size of the finite population from which each observation was
drawn.

Continuing the example above, suppose the survey house drew at random a fixed number of elementary
schools, a fixed number of middle schools, and a fixed number of high schools. If the variable stype

is a vector of characters ("E" for elementary schools, "M" for middle schools, and "H" for high schools)
that identifies the type of school each case represents and fpc is a numerical vector that identifies for
each case the total number of schools of the same type in the population, then the user could estimate
the following model:

> z.out2 <- zelig(api00 ~ meals + yr.rnd,

+ model = "normal.survey", strata=~stype, fpc=~fpc, data = apistrat)

Summarize the regression output:
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> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the first example,
when pre-existing sampling weights were used. When sampling weights are omitted, they are estimated
automatically for "normal.survey" models based on the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard error estimates
are lower in this example than in the previous example, in which the user omitted variables pertaining
to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals that includes counts of the
number of out-of-hospital cardiac arrests that each hospital treats and the number of patients who
arrive alive at each hospital:

> data(scd, package="survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey design). For the
sake of illustrating how replicate weights can be used as inputs in normal.survey models, create a set
of balanced repeated replicate (BRR) weights:

> BRRrep<-2*cbind(c(1,0,1,0,1,0),c(1,0,0,1,0,1), c(0,1,1,0,0,1),c(0,1,0,1,1,0))

Estimate a model that regresses counts of patients who arrive alive in each hospital on the number
of cardiac arrests that each hospital treats, using the BRR replicate weights in BRRrep to compute
standard errors.

> z.out3 <- zelig(alive ~ arrests , model = "poisson.survey",

+ repweights=BRRrep, type="BRR", data=scd)

Summarize the regression coefficients:

> summary(z.out3)

Set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8))

Generate first differences for the effect of minimal versus maximal cardiac arrests on numbers of patients
who arrive alive:

> s.out3<- sim(z.out3, x=x.low, x1=x.high)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the continuous dependent variable for observation i.

• The stochastic component is described by a univariate normal model with a vector of means µi and
scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

• The systematic component is

µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of coefficients.

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

 n∑
i=1

(1− πi)
π2
i

(Xi(Yi − µi))′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)
πiπjπij

(Xi(Yi − µi))′(Xj(Yj − µj))

 Σ̂
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where πi is the probability of case i being sampled, Xi is a vector of the values of the explanatory variables
for case i, Yi is value of the dependent variable for case i, µ̂i is the predicted value of the dependent variable
for case i based on the linear model estimates, and Σ̂ is the conventional variance-covariance matrix in a
parametric glm. This statistic is derived from the method for estimating the variance of sums described in
[4] and the Horvitz-Thompson estimator of the variance of a sum described in [8].

When replicate weights are used, the model is re-estimated for each set of replicate weights, and the
variance of each parameter is estimated by summing the squared deviations of the replicates from their
mean.

Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the the stochastic component,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

• The predicted value (qi$pr) is drawn from the distribution defined by the set of parameters (µi, σ).

• The first difference (qi$fd) is:
FD = E(Y | x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "normal.survey", data), then you may examine the available in-
formation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.
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– fitted.values: fitted values. For the survey-weighted normal model, these are identical to the
linear predictors.

– linear.predictors: fitted values. For the survey-weighted normal model, these are identical to
fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution defined by (µi, σ).

– qi$fd: the simulated first difference in the simulated expected values for the values specified in x

and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

When users estimate normal.survey models with replicate weights in Zelig, an object called .survey.prob.weights

is created in the global environment. Zelig will over-write any existing object with that name, and users are
therefore advised to re-name any object called .survey.prob.weights before using normal.survey models
in Zelig.

How to Cite the Normal Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part of the survey pack-
age by Thomas Lumley. Users may wish to refer to the help files for the three functions that Zelig draws upon
when estimating survey-weighted models, namely, help(svyglm), help(svydesign), and help(svrepdesign).
The Gamma model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43].
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Chapter 37

logit.survey: Survey-Weighted
Logistic Regression for Dichotomous
Dependent Variables

37.1 logit.survey: Survey-Weighted Logistic Regression for Di-
chotomous Dependent Variables

The survey-weighted logistic regression model is appropriate for survey data obtained using complex sampling
techniques, such as stratified random or cluster sampling (e.g., not simple random sampling). Like the
conventional logistic regression models (see Section 13.1), survey-weighted logistic regression specifies a
dichotomous dependent variable as function of a set of explanatory variables. The survey-weighted logit
model reports estimates of model parameters identical to conventional logit estimates, but uses information
from the survey design to correct variance estimates.

The logit.survey model accommodates three common types of complex survey data. Each method
listed here requires selecting specific options which are detailed in the “Additional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each observation. For
example, if a survey intentionally over-samples a particular type of case, weights can be used to correct
for the over-representation of that type of case in the dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the population. For each
stratum or cluster, this is computed as the number of observations in the sample drawn from that
group divided by the number of observations in the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that identify the
strata or cluster from which observations are drawn. For stratified random sampling designs, observa-
tions may be nested in different strata. There are two ways to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stratum or cluster
from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sampling weights from
the data.

3. Replication weights: To preserve the anonymity of survey participants, some surveys exclude strata
and cluster ids from the public data and instead release only pre-computed replicate weights.

209



Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section 7.1), survey-weighted logistic models accept the
following optional inputs:

1. Datasets that include survey weights:.

• probs: An optional formula or numerical vector specifying each case’s probability weight, the
probability that the case was selected. Probability weights need not (and, in most cases, will not)
sum to one. Cases with lower probability weights are weighted more heavily in the computation
of model coefficients.

• weights: An optional numerical vector specifying each case’s sample weight, the inverse of the
probability that the case was selected. Sampling weights need not (and, in most cases, will not)
sum to one. Cases with higher sampling weights are weighted more heavily in the computation of
model coefficients.

2. Datasets that include strata/cluster identifiers:

• ids: An optional formula or numerical vector identifying the cluster from which each observation
was drawn (ordered from largest level to smallest level). For survey designs that do not involve
cluster sampling, ids defaults to NULL.

• fpc: An optional numerical vector identifying each case’s frequency weight, the total number of
units in the population from which each observation was sampled.

• strata: An optional formula or vector identifying the stratum from which each observation was
sampled. Entries may be numerical, logical, or strings. For survey designs that do not involve
cluster sampling, strata defaults to NULL.

• nest: An optional logical value specifying whether primary sampling unites (PSUs) have non-
unique ids across multiple strata. nest=TRUE is appropriate when PSUs reuse the same identifiers
across strata. Otherwise, nest defaults to FALSE.

• check.strata: An optional input specifying whether to check that clusters are nested in strata.
If check.strata is left at its default, !nest, the check is not performed. If check.strata is
specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

• repweights: A formula or matrix specifying replication weights, numerical vectors of weights
used in a process in which the sample is repeatedly re-weighted and parameters are re-estimated
in order to compute the variance of the model parameters.

• type: A string specifying the type of replication weights being used. This input is required if
replicate weights are specified. The following types of replication weights are recognized: "BRR",
"Fay", "JK1", "JKn", "bootstrap", or "other".

• weights: An optional vector or formula specifying each case’s sample weight, the inverse of the
probability that the case was selected. If a survey includes both sampling weights and replicate
weights separately for the same survey, both should be included in the model specification. In these
cases, sampling weights are used to correct potential biases in in the computation of coefficients
and replication weights are used to compute the variance of coefficient estimates.
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• combined.weights: An optional logical value that should be specified as TRUE if the replicate
weights include the sampling weights. Otherwise, combined.weights defaults to FALSE.

• rho: An optional numerical value specifying a shrinkage factor for replicate weights of type "Fay".

• bootstrap.average: An optional numerical input specifying the number of iterations over which
replicate weights of type "bootstrap" were averaged. This input should be left as NULL for
"bootstrap" weights that were not were created by averaging.

• scale: When replicate weights are included, the variance is computed as the sum of squared
deviations of the replicates from their mean. scale is an optional overall multiplier for the
standard deviations.

• rscale: Like scale, rscale specifies an optional vector of replicate-specific multipliers for the
squared deviations used in variance computation.

• fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc is an optional
numerical vector (with one entry for each replicate) designating the replicates’ finite population
corrections.

• fpctype: When a finite population correction is included as an fpc input, fpctype is a required
input specifying whether the input to fpc is a sampling fraction (fpctype="fraction") or a
direct correction (fpctype="correction").

• return.replicates: An optional logical value specifying whether the replicates should be re-
turned as a component of the output. return.replicates defaults to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package="survey")

Suppose that a dataset included a dichotomous indicator for whether each public school attends classes
year round (yr.rnd), a measure of the percentage of students at each school who receive subsidized
meals (meals), a measure of the percentage of students at each school who are new to to the school
(mobility), and sampling weights computed by the survey house (pw). Estimate a model that regresses
the year-round schooling indicator on the meals and mobility variables:

> z.out1 <- zelig(yr.rnd ~ meals + mobility, model = "logit.survey", weights=~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th percentile) and
low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals=quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals=quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children receiving subsidized
meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:
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> plot(s.out1)

Expected Values: E(Y|X)

N = 1000

F
re

qu
en

cy

0.1 0.2 0.3 0.4

0
20

0
40

0

Expected Values (for X1): E(Y|X1)

N =  1000

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20

0
20

0
40

0

Y
 =

 0
Y

 =
 1

Predicted Values: E(Y|X)

0 20 40 60 80

Y
 =

 0
Y

 =
 1

Predicted Values: Y|X1

0 20 40 60 80

−0.4 −0.3 −0.2 −0.1 0.0

0
4

8

First Differences: E(Y|X1)−E(Y|X)

N = 1000   Bandwidth = 0.008917

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

Risk Ratios: P(Y=1|X1)/P(Y=0|X)

N = 1000   Bandwidth = 0.02004

D
en

si
ty

2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example excluded sam-
pling weights but made other details about the survey design available. A user can still estimate a
model without sampling weights that instead uses inputs that identify the stratum and/or cluster to
which each observation belongs and the size of the finite population from which each observation was
drawn.

Continuing the example above, suppose the survey house drew at random a fixed number of elementary
schools, a fixed number of middle schools, and a fixed number of high schools. If the variable stype

is a vector of characters ("E" for elementary schools, "M" for middle schools, and "H" for high schools)
that identifies the type of school each case represents and fpc is a numerical vector that identifies for
each case the total number of schools of the same type in the population, then the user could estimate
the following model:

> z.out2 <- zelig(yr.rnd ~ meals + mobility, model = "logit.survey", strata=~stype, fpc=~fpc, data = apistrat)

Summarize the regression output:

> summary(z.out2)
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The coefficient estimates for this example are identical to the point estimates in the first example,
when pre-existing sampling weights were used. When sampling weights are omitted, they are estimated
automatically for "logit.survey" models based on the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard error estimates
are lower in this example than in the previous example, in which the user omitted variables pertaining
to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals about the number of out-of-
hospital cardiac arrests that each hospital treats and the number of patients who arrive alive at each
hospital:

> data(scd, package="survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey design). For
the sake of illustrating how replicate weights can be used as inputs in logit.survey models, create a
set of balanced repeated replicate (BRR) weights and an (artificial) dependent variable to simulate an
indicator for whether each hospital was sued:

> BRRrep<-2*cbind(c(1,0,1,0,1,0),c(1,0,0,1,0,1), c(0,1,1,0,0,1),c(0,1,0,1,1,0))

> scd$sued <- as.vector(c(0,0,0,1,1,1))

Estimate a model that regresses the indicator for hospitals that were sued on the number of patients
who arrive alive in each hospital and the number of cardiac arrests that each hospital treats, using the
BRR replicate weights in BRRrep to compute standard errors.

> z.out3 <- zelig(formula=sued ~ arrests + alive , model = "logit.survey",

+ repweights=BRRrep, type="BRR", data=scd)

Summarize the regression coefficients:

> summary(z.out3)

Set alive at its mean and set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8))

Generate first differences for the effect of high versus low cardiac arrests on the probability that a
hospital will be sued:

> s.out3 <- sim(z.out3, x=x.high, x1=x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the binary dependent variable for observation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(yi | πi)
= πyii (1− πi)1−yi

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k explanatory variables for observation i and β is the vector of coefficients.
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Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

 n∑
i=1

(1− πi)
π2
i

(Xi(Yi − µi))′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)
πiπjπij

(Xi(Yi − µi))′(Xj(Yj − µj))

 Σ̂

where πi is the probability of case i being sampled, Xi is a vector of the values of the explanatory variables
for case i, Yi is value of the dependent variable for case i, µ̂i is the predicted value of the dependent variable
for case i based on the linear model estimates, and Σ̂ is the conventional variance-covariance matrix in a
parametric glm. This statistic is derived from the method for estimating the variance of sums described in
[4] and the Horvitz-Thompson estimator of the variance of a sum described in [8].

When replicate weights are used, the model is re-estimated for each set of replicate weights, and the
variance of each parameter is estimated by summing the squared deviations of the replicates from their
mean.

Quantities of Interest

• The expected values (qi$ev) for the survey-weighted logit model are simulations of the predicted
probability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value πi.

• The first difference (qi$fd) for the survey-weighted logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "logit.survey", data), then you may examine the available in-
formation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

When users estimate logit.survey models with replicate weights in Zelig, an object called .survey.prob.weights

is created in the global environment. Zelig will over-write any existing object with that name, and users are
therefore advised to re-name any object called .survey.prob.weights before using logit.survey models
in Zelig.
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How to Cite the Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part of the survey pack-
age by Thomas Lumley. Users may wish to refer to the help files for the three functions that Zelig draws upon
when estimating survey-weighted models, namely, help(svyglm), help(svydesign), and help(svrepdesign).
The Gamma model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43].
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Chapter 38

poisson.survey: Survey-Weighted
Poisson Regression for Event Count
Dependent Variables

poisson.survey: Survey-Weighted Poisson Regression for Event Count Dependent Variables Kosuke Imai,
Olivia Lau, and Gary King

38.1 poisson.survey: Survey-Weighted Poisson Regression for Event
Count Dependent Variables

The survey-weighted poisson regression model is appropriate for survey data obtained using complex sam-
pling techniques, such as stratified random or cluster sampling (e.g., not simple random sampling). Like
the conventional poisson regression model (see Section 17.1), survey-weighted poisson regression specifies
a dependent variable representing the number of independent events that occur during a fixed period of
time as function of a set of explanatory variables. The survey-weighted poisson model reports estimates of
model parameters identical to conventional poisson estimates, but uses information from the survey design
to correct variance estimates.

The poisson.survey model accommodates three common types of complex survey data. Each method
listed here requires selecting specific options which are detailed in the “Additional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each observation. For
example, if a survey intentionally over-samples a particular type of case, weights can be used to correct
for the over-representation of that type of case in the dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the population. For each
stratum or cluster, this is computed as the number of observations in the sample drawn from that
group divided by the number of observations in the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that identify the
strata or cluster from which observations are drawn. For stratified random sampling designs, observa-
tions may be nested in different strata. There are two ways to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stratum or cluster
from which each observation was drawn.
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(b) For stratified random sampling designs, use the raw strata ids to compute sampling weights from
the data.

3. Replication weights: To preserve the anonymity of survey participants, some surveys exclude strata
and cluster ids from the public data and instead release only pre-computed replicate weights.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section 7.1), survey-weighted poisson models accept the
following optional inputs:

1. Datasets that include survey weights:.

• probs: An optional formula or numerical vector specifying each case’s probability weight, the
probability that the case was selected. Probability weights need not (and, in most cases, will not)
sum to one. Cases with lower probability weights are weighted more heavily in the computation
of model coefficients.

• weights: An optional numerical vector specifying each case’s sample weight, the inverse of the
probability that the case was selected. Sampling weights need not (and, in most cases, will not)
sum to one. Cases with higher sampling weights are weighted more heavily in the computation of
model coefficients.

2. Datasets that include strata/cluster identifiers:

• ids: An optional formula or numerical vector identifying the cluster from which each observation
was drawn (ordered from largest level to smallest level). For survey designs that do not involve
cluster sampling, ids defaults to NULL.

• fpc: An optional numerical vector identifying each case’s frequency weight, the total number of
units in the population from which each observation was sampled.

• strata: An optional formula or vector identifying the stratum from which each observation was
sampled. Entries may be numerical, logical, or strings. For survey designs that do not involve
cluster sampling, strata defaults to NULL.

• nest: An optional logical value specifying whether primary sampling unites (PSUs) have non-
unique ids across multiple strata. nest=TRUE is appropriate when PSUs reuse the same identifiers
across strata. Otherwise, nest defaults to FALSE.

• check.strata: An optional input specifying whether to check that clusters are nested in strata.
If check.strata is left at its default, !nest, the check is not performed. If check.strata is
specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

• repweights: A formula or matrix specifying replication weights, numerical vectors of weights
used in a process in which the sample is repeatedly re-weighted and parameters are re-estimated
in order to compute the variance of the model parameters.

• type: A string specifying the type of replication weights being used. This input is required if
replicate weights are specified. The following types of replication weights are recognized: "BRR",
"Fay", "JK1", "JKn", "bootstrap", or "other".
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• weights: An optional vector or formula specifying each case’s sample weight, the inverse of the
probability that the case was selected. If a survey includes both sampling weights and replicate
weights separately for the same survey, both should be included in the model specification. In these
cases, sampling weights are used to correct potential biases in in the computation of coefficients
and replication weights are used to compute the variance of coefficient estimates.

• combined.weights: An optional logical value that should be specified as TRUE if the replicate
weights include the sampling weights. Otherwise, combined.weights defaults to FALSE.

• rho: An optional numerical value specifying a shrinkage factor for replicate weights of type "Fay".

• bootstrap.average: An optional numerical input specifying the number of iterations over which
replicate weights of type "bootstrap" were averaged. This input should be left as NULL for
"bootstrap" weights that were not were created by averaging.

• scale: When replicate weights are included, the variance is computed as the sum of squared
deviations of the replicates from their mean. scale is an optional overall multiplier for the
standard deviations.

• rscale: Like scale, rscale specifies an optional vector of replicate-specific multipliers for the
squared deviations used in variance computation.

• fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc is an optional
numerical vector (with one entry for each replicate) designating the replicates’ finite population
corrections.

• fpctype: When a finite population correction is included as an fpc input, fpctype is a required
input specifying whether the input to fpc is a sampling fraction (fpctype="fraction") or a
direct correction (fpctype="correction").

• return.replicates: An optional logical value specifying whether the replicates should be re-
turned as a component of the output. return.replicates defaults to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package="survey")

Suppose that a dataset included a variable reporting the number of times a new student enrolled
during the previous school year (enroll), a measure of each school’s academic performance (api99), an
indicator for whether each school holds classes year round (year.rnd), and sampling weights computed
by the survey house (pw). Estimate a model that regresses enroll on api99 and year.rnd:

> z.out1 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey",

+ weights=~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th percentile) and
low (20th percentile) value for the measure of academic performance:

> x.low <- setx(z.out1, api99= quantile(apistrat$api99, 0.2))

> x.high <- setx(z.out1, api99= quantile(apistrat$api99, 0.8))

Generate first differences for the effect of high versus low concentrations of children receiving subsidized
meals on the probability of holding school year-round:
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> s.out1 <- sim(z.out1, x=x.low, x1=x.high)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

> plot(s.out1)
Y

 =
 0

Y
 =

 1

Predicted Values: E(Y|X)

−1.0 −0.5 0.0 0.5 1.0

−300 −250 −200 −150 −100 −50 0 50

0.
00

0
0.

00
6

First Differences: E(Y|X1)−E(Y|X)

N = 1000   Bandwidth = 10.65

D
en

si
ty

2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example excluded sam-
pling weights but made other details about the survey design available. A user can still estimate a
model without sampling weights that instead uses inputs that identify the stratum and/or cluster to
which each observation belongs and the size of the finite population from which each observation was
drawn.

Continuing the example above, suppose the survey house drew at random a fixed number of elementary
schools, a fixed number of middle schools, and a fixed number of high schools. If the variable stype

is a vector of characters ("E" for elementary schools, "M" for middle schools, and "H" for high schools)
that identifies the type of school each case represents and fpc is a numerical vector that identifies for
each case the total number of schools of the same type in the population, then the user could estimate
the following model:
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> z.out2 <- zelig(enroll ~ api99 + yr.rnd , model = "poisson.survey", data = apistrat,

+ strata=~stype, fpc=~fpc)

Summarize the regression output:

> summary(z.out2)

The coefficient estimates for this example are identical to the point estimates in the first example,
when pre-existing sampling weights were used. When sampling weights are omitted, they are estimated
automatically for "poisson.survey" models based on the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard error estimates
are lower in this example than in the previous example, in which the user omitted variables pertaining
to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals about the number of out-of-
hospital cardiac arrests that each hospital treats and the number of patients who arrive alive at each
hospital:

> data(scd, package="survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey design). For the
sake of illustrating how replicate weights can be used as inputs in normal.survey models, create a set
of balanced repeated replicate (BRR) weights:

> BRRrep<-2*cbind(c(1,0,1,0,1,0),c(1,0,0,1,0,1), c(0,1,1,0,0,1),c(0,1,0,1,1,0))

Estimate a model that regresses the count of patients who arrived alive at the hospital last year on the
number of patients treated for cardiac arrests, using the BRR replicate weights in BRRrep to compute
standard errors:

> z.out3 <- zelig(alive ~ arrests , model = "poisson.survey",

+ repweights=BRRrep, type="BRR", data=scd)

> summary(z.out3)

Summarize the regression coefficients:

> summary(z.out3)

Set the explanatory variable arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8))

Generate first differences for the effect of high versus low cardiac arrests on the count of patients who
arrive alive:

> s.out3 <- sim(z.out3, x=x.high, x1=x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)
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Model

Let Yi be the number of independent events that occur during a fixed time period. This variable can take
any non-negative integer.

• The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.

• The systematic component is
λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of coefficients.

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

 n∑
i=1

(1− πi)
π2
i

(Xi(Yi − µi))′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)
πiπjπij

(Xi(Yi − µi))′(Xj(Yj − µj))

 Σ̂
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where πi is the probability of case i being sampled, Xi is a vector of the values of the explanatory variables
for case i, Yi is value of the dependent variable for case i, µ̂i is the predicted value of the dependent variable
for case i based on the linear model estimates, and Σ̂ is the conventional variance-covariance matrix in a
parametric glm. This statistic is derived from the method for estimating the variance of sums described in
[4] and the Horvitz-Thompson estimator of the variance of a sum described in [8].

When replicate weights are used, the model is re-estimated for each set of replicate weights, and the
variance of each parameter is estimated by summing the squared deviations of the replicates from their
mean.

Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Y ) = λi = exp(xiβ),

given draws of β from its sampling distribution.

• The predicted value (qi$pr) is a random draw from the poisson distribution defined by mean λi.

• The first difference in the expected values (qi$fd) is given by:

FD = E(Y |x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "poisson.survey", data), then you may examine the available
information in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: a vector of the fitted values for the systemic component λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions defined by λi.

– qi$fd: the simulated first differences in the expected values given the specified values of x and
x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

When users estimate poisson.survey models with replicate weights in Zelig, an object called .survey.prob.weights

is created in the global environment. Zelig will over-write any existing object with that name, and users
are therefore advised to re-name any object called .survey.prob.weights before using poisson.survey

models in Zelig.

How to Cite the Gamma Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

Survey-weighted linear models and the sample data used in the examples above are a part of the survey pack-
age by Thomas Lumley. Users may wish to refer to the help files for the three functions that Zelig draws upon
when estimating survey-weighted models, namely, help(svyglm), help(svydesign), and help(svrepdesign).
The Gamma model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43].
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Chapter 39

probit.survey: Survey-Weighted
Probit Regression for Dichotomous
Dependent Variables

39.1 probit.survey: Survey-Weighted Probit Regression for Di-
chotomous Dependent Variables

The survey-weighted probit regression model is appropriate for survey data obtained using complex sam-
pling techniques, such as stratified random or cluster sampling (e.g., not simple random sampling). Like
the conventional probit regression models (see Section 18.1), survey-weighted probit regression specifies a
dichotomous dependent variable as function of a set of explanatory variables. The survey-weighted probit
model reports estimates of model parameters identical to conventional probit estimates, but uses information
from the survey design to correct variance estimates.

The probit.survey model accommodates three common types of complex survey data. Each method
listed here requires selecting specific options which are detailed in the “Additional Inputs” section below.

1. Survey weights: Survey data are often published along with weights for each observation. For
example, if a survey intentionally over-samples a particular type of case, weights can be used to correct
for the over-representation of that type of case in the dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the population. For each
stratum or cluster, this is computed as the number of observations in the sample drawn from that
group divided by the number of observations in the population in the group.

(b) Sampling weights are the inverse of the probability weights.

2. Strata/cluster identification: A complex survey dataset may include variables that identify the
strata or cluster from which observations are drawn. For stratified random sampling designs, observa-
tions may be nested in different strata. There are two ways to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the stratum or cluster
from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata ids to compute sampling weights from
the data.

3. Replication weights: To preserve the anonymity of survey participants, some surveys exclude strata
and cluster ids from the public data and instead release only pre-computed replicate weights.
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Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.survey", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard zelig inputs (see Section 7.1), survey-weighted probit models accept the following
optional inputs:

1. Datasets that include survey weights:.

• probs: An optional formula or numerical vector specifying each case’s probability weight, the
probability that the case was selected. Probability weights need not (and, in most cases, will not)
sum to one. Cases with lower probability weights are weighted more heavily in the computation
of model coefficients.

• weights: An optional numerical vector specifying each case’s sample weight, the inverse of the
probability that the case was selected. Sampling weights need not (and, in most cases, will not)
sum to one. Cases with higher sampling weights are weighted more heavily in the computation of
model coefficients.

2. Datasets that include strata/cluster identifiers:

• ids: An optional formula or numerical vector identifying the cluster from which each observation
was drawn (ordered from largest level to smallest level). For survey designs that do not involve
cluster sampling, ids defaults to NULL.

• fpc: An optional numerical vector identifying each case’s frequency weight, the total number of
units in the population from which each observation was sampled.

• strata: An optional formula or vector identifying the stratum from which each observation was
sampled. Entries may be numerical, logical, or strings. For survey designs that do not involve
cluster sampling, strata defaults to NULL.

• nest: An optional logical value specifying whether primary sampling unites (PSUs) have non-
unique ids across multiple strata. nest=TRUE is appropriate when PSUs reuse the same identifiers
across strata. Otherwise, nest defaults to FALSE.

• check.strata: An optional input specifying whether to check that clusters are nested in strata.
If check.strata is left at its default, !nest, the check is not performed. If check.strata is
specified as TRUE, the check is carried out.

3. Datasets that include replication weights:

• repweights: A formula or matrix specifying replication weights, numerical vectors of weights
used in a process in which the sample is repeatedly re-weighted and parameters are re-estimated
in order to compute the variance of the model parameters.

• type: A string specifying the type of replication weights being used. This input is required if
replicate weights are specified. The following types of replication weights are recognized: "BRR",
"Fay", "JK1", "JKn", "bootstrap", or "other".

• weights: An optional vector or formula specifying each case’s sample weight, the inverse of the
probability that the case was selected. If a survey includes both sampling weights and replicate
weights separately for the same survey, both should be included in the model specification. In these
cases, sampling weights are used to correct potential biases in in the computation of coefficients
and replication weights are used to compute the variance of coefficient estimates.
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• combined.weights: An optional logical value that should be specified as TRUE if the replicate
weights include the sampling weights. Otherwise, combined.weights defaults to FALSE.

• rho: An optional numerical value specifying a shrinkage factor for replicate weights of type "Fay".

• bootstrap.average: An optional numerical input specifying the number of iterations over which
replicate weights of type "bootstrap" were averaged. This input should be left as NULL for
"bootstrap" weights that were not were created by averaging.

• scale: When replicate weights are included, the variance is computed as the sum of squared
deviations of the replicates from their mean. scale is an optional overall multiplier for the
standard deviations.

• rscale: Like scale, rscale specifies an optional vector of replicate-specific multipliers for the
squared deviations used in variance computation.

• fpc: For models in which "JK1", "JKn", or "other" replicates are specified, fpc is an optional
numerical vector (with one entry for each replicate) designating the replicates’ finite population
corrections.

• fpctype: When a finite population correction is included as an fpc input, fpctype is a required
input specifying whether the input to fpc is a sampling fraction (fpctype="fraction") or a
direct correction (fpctype="correction").

• return.replicates: An optional logical value specifying whether the replicates should be re-
turned as a component of the output. return.replicates defaults to FALSE.

Examples

1. A dataset that includes survey weights:

Attach the sample data:

> data(api, package="survey")

Suppose that a dataset included a dichotomous indicator for whether each public school attends classes
year round (yr.rnd), a measure of the percentage of students at each school who receive subsidized
meals (meals), a measure of the percentage of students at each school who are new to to the school
(mobility), and sampling weights computed by the survey house (pw). Estimate a model that regresses
the year-round schooling indicator on the meals and mobility variables:

> z.out1 <- zelig(yr.rnd ~ meals + mobility, model = "probit.survey", weights=~pw, data = apistrat)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, and set a high (80th percentile) and
low (20th percentile) value for “meals”:

> x.low <- setx(z.out1, meals=quantile(apistrat$meals, 0.2))

> x.high <- setx(z.out1, meals=quantile(apistrat$meals, 0.8))

Generate first differences for the effect of high versus low concentrations of children receiving subsidized
meals on the probability of holding school year-round:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Generate a visual summary of the quantities of interest:

229



> plot(s.out1)
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2. A dataset that includes strata/cluster identifiers:

Suppose that the survey house that provided the dataset used in the previous example excluded sam-
pling weights but made other details about the survey design available. A user can still estimate a
model without sampling weights that instead uses inputs that identify the stratum and/or cluster to
which each observation belongs and the size of the finite population from which each observation was
drawn.

Continuing the example above, suppose the survey house drew at random a fixed number of elementary
schools, a fixed number of middle schools, and a fixed number of high schools. If the variable stype

is a vector of characters ("E" for elementary schools, "M" for middle schools, and "H" for high schools)
that identifies the type of school each case represents and fpc is a numerical vector that identifies for
each case the total number of schools of the same type in the population, then the user could estimate
the following model:

> z.out2 <- zelig(yr.rnd ~ meals + mobility, model = "probit.survey", strata=~stype, fpc=~fpc, data = apistrat)

Summarize the regression output:

> summary(z.out2)
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The coefficient estimates for this example are identical to the point estimates in the first example,
when pre-existing sampling weights were used. When sampling weights are omitted, they are estimated
automatically for "probit.survey" models based on the user-defined description of sampling designs.

Moreover, because the user provided information about the survey design, the standard error estimates
are lower in this example than in the previous example, in which the user omitted variables pertaining
to the details of the complex survey design.

3. A dataset that includes replication weights:

Consider a dataset that includes information for a sample of hospitals about the number of out-of-
hospital cardiac arrests that each hospital treats and the number of patients who arrive alive at each
hospital:

> data(scd, package="survey")

Survey houses sometimes supply replicate weights (in lieu of details about the survey design). For the
sake of illustrating how replicate weights can be used as inputs in probit.survey models, create a
set of balanced repeated replicate (BRR) weights and an (artificial) dependent variable to simulate an
indicator for whether each hospital was sued:

> BRRrep<-2*cbind(c(1,0,1,0,1,0),c(1,0,0,1,0,1), c(0,1,1,0,0,1),c(0,1,0,1,1,0))

> scd$sued <- as.vector(c(0,0,0,1,1,1))

Estimate a model that regresses the indicator for hospitals that were sued on the number of patients
who arrive alive in each hospital and the number of cardiac arrests that each hospital treats, using the
BRR replicate weights in BRRrep to compute standard errors.

> z.out3 <- zelig(formula=sued ~ arrests + alive , model = "probit.survey",

+ repweights=BRRrep, type="BRR", data=scd)

Summarize the regression coefficients:

> summary(z.out3)

Set alive at its mean and set arrests at its 20th and 80th quantiles:

> x.low <- setx(z.out3, arrests = quantile(scd$arrests, .2))

> x.high <- setx(z.out3, arrests = quantile(scd$arrests,.8))

Generate first differences for the effect of high versus low cardiac arrests on the probability that a
hospital will be sued:

> s.out3 <- sim(z.out3, x=x.high, x1=x.low)

> summary(s.out3)

Generate a visual summary of quantities of interest:

> plot(s.out3)

231



Expected Values: E(Y|X)

N = 1000

F
re

qu
en

cy

2.0e−16 2.5e−16 3.0e−16 3.5e−16 4.0e−16

0
40

0
80

0

Expected Values (for X1): E(Y|X1)

N =  1000

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

Y
 =

 0
Y

 =
 1

Predicted Values: E(Y|X)

0 20 40 60 80 100

Y
 =

 0
Y

 =
 1

Predicted Values: Y|X1

0 20 40 60 80 100

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

1.
0

First Differences: E(Y|X1)−E(Y|X)

N = 1000   Bandwidth = 0.2261

D
en

si
ty

2e+15 4e+15 6e+15

0e
+

00
3e

−
16

Risk Ratios: P(Y=1|X1)/P(Y=0|X)

N = 1000   Bandwidth = 1.018e+15

D
en

si
ty

Model

Let Yi be the observed binary dependent variable for observation i which takes the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi),

where πi = Pr(Yi = 1).

• The systematic component is
πi = Φ(xiβ)

where Φ(µ) is the cumulative distribution function of the Normal distribution with mean 0 and unit
variance.

Variance

When replicate weights are not used, the variance of the coefficients is estimated as

Σ̂

 n∑
i=1

(1− πi)
π2
i

(Xi(Yi − µi))′(Xi(Yi − µi)) + 2

n∑
i=1

n∑
j=i+1

(πij − πiπj)
πiπjπij

(Xi(Yi − µi))′(Xj(Yj − µj))

 Σ̂
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where πi is the probability of case i being sampled, Xi is a vector of the values of the explanatory variables
for case i, Yi is value of the dependent variable for case i, µ̂i is the predicted value of the dependent variable
for case i based on the linear model estimates, and Σ̂ is the conventional variance-covariance matrix in a
parametric glm. This statistic is derived from the method for estimating the variance of sums described in
[4] and the Horvitz-Thompson estimator of the variance of a sum described in [8].

When replicate weights are used, the model is re-estimated for each set of replicate weights, and the
variance of each parameter is estimated by summing the squared deviations of the replicates from their
mean.

Quantities of Interest

• The expected value (qi$ev) is a simulation of predicted probability of success

E(Y ) = πi = Φ(xiβ),

given a draw of β from its sampling distribution.

• The predicted value (qi$pr) is a draw from a Bernoulli distribution with mean πi.

• The first difference (qi$fd) in expected values is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1)/Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.
Variation in the simulations are due to uncertainty in simulating E[Yi(ti = 0)], the counterfactual
expected value of Yi for observations in the treatment group, under the assumption that everything
stays the same except that the treatment indicator is switched to ti = 0.

• In conditional prediction models, the average predicted treatment effect (att.pr) for the treatment
group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1) and control (ti = 0) groups.

Variation in the simulations are due to uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted
value of Yi for observations in the treatment group, under the assumption that everything stays the
same except that the treatment indicator is switched to ti = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "probit.survey", data), then you may examine the available in-
formation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.
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• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS fit.

– fitted.values: the vector of fitted values for the systemic component, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and t-
statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the treated from conditional
prediction models.

When users estimate probit.survey models with replicate weights in Zelig, an object called .survey.prob.weights

is created in the global environment. Zelig will over-write any existing object with that name, and users are
therefore advised to re-name any object called .survey.prob.weights before using probit.survey models
in Zelig.

How to Cite the Probit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

Survey-weighted linear models and the sample data used in the examples above are a part of the survey pack-
age by Thomas Lumley. Users may wish to refer to the help files for the three functions that Zelig draws upon
when estimating survey-weighted models, namely, help(svyglm), help(svydesign), and help(svrepdesign).
The Gamma model is part of the stats package by (author?) [57]. Advanced users may wish to refer to
help(glm) and help(family), as well as [43].
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Chapter 40

logit.gam:

40.1 logit.gam: Generalized Additive Model for Dichotomous De-
pendent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for dichotomous dependent vari-
ables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "logit.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for which s() is
not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM models.

• method: Controls the fitting method to be used. Fitting methods are selected via a list environment
within method=gam.method(). See gam.method() for details.

• scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” section for details)
except for Logit models where a Un-Biased Risk Estimator (UBRE) (also see the “Model” section for
details) is used with a scale parameter assumed to be 1. If scale is greater than 1, it is assumed to be
the scale parameter/variance and UBRE is used. If scale is negative GCV is used.

• knots: An optional list of knot values to be used for the construction of basis functions.

• H: A user supplied fixed quadratic penalty on the parameters of the GAM can be supplied with this as
its coefficient matrix. For example, ridge penalties can be added to the parameters of the GAM to aid
in identification on the scale of the linear predictor.

• sp: A vector of smoothing parameters for each term.

• ...: additional options passed to the logit.gam model. See the mgcv library for details.
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Examples

1. Basic Example

Create some count data:

> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> g <- (f-5)/3

> g <- binomial()$linkinv(g)

> y <- rbinom(g,1,g)

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), model="logit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

Note that the plot() function can be used after model estimation and before simulation to view the
nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then simulate, summarize
and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and high values
(80th percentile) of the explanatory variable x3 while all the other variables are held at their default
(mean/mode) values.

> x.high <- setx(z.out, x3= quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x=x.high, x1=x.low)

> summary(s.out)

> plot(s.out)

>

3. Variations in GAM model specification. Note that setx and sim work as shown in the above examples
for any GAM model. As such, in the interest of parsimony, I will not re-specify the simulations of
quantities of interest.

An extra ridge penalty (useful with convergence problems):

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), H=diag(0.5,37),

+ model="logit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

>

Set the smoothing parameter for the first term, estimate the rest:
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> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),sp=c(0.01,-1,-1,-1),

+ model="logit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>

Set lower bounds on smoothing parameters:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),min.sp=c(0.001,0.01,0,10),

+ model="logit.gam", data=my.data)

> summary(z.out)

> plot(z.out, pages=1)

>

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <-zelig(y~s(x0,k=4,fx=TRUE,bs="tp")+s(x1,k=12)+s(x2,k=15),

+ model="logit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>
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Model

GAM models use families the same way GLM models do: they specify the distribution and link function
to use in model fitting. In the case of logit.gam a logistic link function is used. Specifically, let Yi be the
binary dependent variable for observation i which takes the value of either 0 or 1.

• The logistic distribution has stochastic component

Yi ∼ Bernoulli(yi|πi)
= πyii (1− πi)1−yi

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi =
1

1 + exp
(
−xiβ +

∑J
j=1 fj(Zj)

) ,
where xi is the vector of covariates, β is the vector of coefficients and fj(Zj) for j = 1, . . . J is the set
of smooth terms..
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Generalized additive models (GAMs) are similar in many respects to generalized linear models (GLMs).
Specifically, GAMs are generally fit by penalized maximum likelihood estimation and GAMs have (or can
have) a parametric component identical to that of a GLM. The difference is that GAMs also include in their
linear predictors a specified sum of smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression splines. Two
techniques may be used to estimate smoothing parameters: Generalized Cross Validation (GCV),

n
D

(n−DF )2
, (40.1)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (40.2)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF is the effective
degrees of freedom of the model. The use of GCV or UBRE can be set by the user with the scale command
described in the “Additional Inputs” section and in either case, smoothing parameters are chosen to minimize
the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one or more) of quadratic
penalty coefficient matrices are constructed for each smooth term. Second, a model matrix is is obtained for
the parametric component of the GAM. These matrices are combined to produce a complete model matrix
and a set of penalty matrices for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then
used to estimate the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process is repeated until
convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).

Quantities of Interest

The quantities of interest for the logit.gam model are the same as those for the standard logistic regression.

• The expected value (qi$ev) for the logit.gam model is the mean of simulations from the stochastic
component,

πi =
1

1 + exp
(
−xiβ +

∑J
j=1 fj(Zj)

) ,
• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-

lated expected value πi.

• The first difference (qi$fd) for the logit.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "logit.gam", data), then you may examine the available information
in z.out by using names(z.out), see the coefficients by using coefficients(z.out), and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.

– model: the model matrix used.

• From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the parametric portion
of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics, and p-values for
the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite the Logitistic General Additive Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The logit.gam model is adapted from the mgcv package by Simon N. Wood [61]. Advanced users may wish
to refer to help(gam), [60], [59], and other documentation accompanying the mgcv package. All examples
are reproduced and extended from mgcv’s gam() help pages.
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Chapter 41

normal.gam

41.1 normal.gam: Generalized Additive Model for Continuous De-
pendent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for continuous dependent variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "normal.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for which s() is
not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM models.

• method: Controls the fitting method to be used. Fitting methods are selected via a list environment
within method=gam.method(). See gam.method() for details.

• scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” section for details)
except for Normal models where a Un-Biased Risk Estimator (UBRE) (also see the “Model” section
for details) is used with a scale parameter assumed to be 1. If scale is greater than 1, it is assumed
to be the scale parameter/variance and UBRE is used. If scale is negative GCV is used.

• knots: An optional list of knot values to be used for the construction of basis functions.

• H: A user supplied fixed quadratic penalty on the parameters of the GAM can be supplied with this as
its coefficient matrix. For example, ridge penalties can be added to the parameters of the GAM to aid
in identification on the scale of the linear predictor.

• sp: A vector of smoothing parameters for each term.

• ...: additional options passed to the normal.gam model. See the mgcv library for details.
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Examples

1. Basic Example:

Create some data:

> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> f0 <- function(x) 2 * sin(pi * x)

> f1 <- function(x) exp(2 * x)

> f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 *

+ x)^3 * (1 - x)^10

> f3 <- function(x) 0 * x

> f <- f0(x0) + f1(x1) + f2(x2)

> e <- rnorm(n, 0, sig); y <- f + e

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), model="normal.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

Note that the plot() function can be used after model estimation and before simulation to view the
nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then simulate, summarize
and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and high values
(80th percentile) of the explanatory variable x3 while all the other variables are held at their default
(mean/mode) values.

> x.high <- setx(z.out, x3= quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x=x.high, x1=x.low)

> summary(s.out)

> plot(s.out)

>

3. Variations in GAM model specification. Note that setx and sim work as shown in the above examples
for any GAM model. As such, in the interest of parsimony, I will not re-specify the simulations of
quantities of interest.

An extra ridge penalty (useful with convergence problems):
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> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), H=diag(0.5,37),

+ model="normal.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

>

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),sp=c(0.01,-1,-1,-1),

+ model="normal.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>

Set lower bounds on smoothing parameters:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),min.sp=c(0.001,0.01,0,10),

+ model="normal.gam", data=my.data)

> summary(z.out)

> plot(z.out, pages=1)

>
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A GAM with 3df regression spline term & 2 penalized terms:

> z.out <-zelig(y~s(x0,k=4,fx=TRUE,bs="tp")+s(x1,k=12)+s(x2,k=15),

+ model="normal.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>

Model

GAM models use families the same way GLM models do: they specify the distribution and link function to
use in model fitting. In the case of normal.gam a normal link function is used. Specifically, let Yi be the
continuous dependent variable for observation i.

• The stochastic component is described by a univariate normal model with a vector of means µi and
scalar variance σ2:

Yi ∼ Normal(µi, σ
2).
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• The systematic component is given by:

µi = xiβ +

J∑
j=1

fj(Zj).

where xi is the vector of k explanatory variables, β is the vector of coefficients and fj(Zj) for j = 1, . . . J
is the set of smooth terms.

Generalized additive models (GAMs) are similar in many respects to generalized linear models (GLMs).
Specifically, GAMs are generally fit by penalized maximum likelihood estimation and GAMs have (or can
have) a parametric component identical to that of a GLM. The difference is that GAMs also include in their
linear predictors a specified sum of smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression splines. Two
techniques may be used to estimate smoothing parameters: Generalized Cross Validation (GCV),

n
D

(n−DF )2
, (41.1)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (41.2)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF is the effective
degrees of freedom of the model. The use of GCV or UBRE can be set by the user with the scale command
described in the “Additional Inputs” section and in either case, smoothing parameters are chosen to minimize
the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one or more) of quadratic
penalty coefficient matrices are constructed for each smooth term. Second, a model matrix is is obtained for
the parametric component of the GAM. These matrices are combined to produce a complete model matrix
and a set of penalty matrices for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then
used to estimate the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process is repeated until
convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).

Quantities of Interest

The quantities of interest for the normal.gam model are the same as those for the standard Normal regression.

• The expected value (qi$ev) for the normal.gam model is the mean of simulations from the stochastic
component,

E(Y ) = µi = xiβ +

J∑
j=1

fj(Zj).

• The predicted value (qi$pr) is a draw from the Normal distribution defined by the set of parameters
(µi, σ

2).

• The first difference (qi$fd) for the normal.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "normal.gam", data), then you may examine the available information
in z.out by using names(z.out), see the coefficients by using coefficients(z.out), and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.

– model: the model matrix used.

• From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the parametric portion
of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics, and p-values for
the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite the Normal General Addtitive Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood [61]. Advanced users may wish
to refer to help(gam), [60], [59], and other documentation accompanying the mgcv package. All examples
are reproduced and extended from mgcv’s gam() help pages.
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Chapter 42

poisson.gam:

42.1 poisson.gam: Generalized Additive Model for Count Depen-
dent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for count dependent variables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "poisson.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for which s() is
not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM models.

• method: Controls the fitting method to be used. Fitting methods are selected via a list environment
within method=gam.method(). See gam.method() for details.

• scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” section for details)
except for Poisson models where a Un-Biased Risk Estimator (UBRE) (also see the “Model” section
for details) is used with a scale parameter assumed to be 1. If scale is greater than 1, it is assumed
to be the scale parameter/variance and UBRE is used. If scale is negative GCV is used.

• knots: An optional list of knot values to be used for the construction of basis functions.

• H: A user supplied fixed quadratic penalty on the parameters of the GAM can be supplied with this as
its coefficient matrix. For example, ridge penalties can be added to the parameters of the GAM to aid
in identification on the scale of the linear predictor.

• sp: A vector of smoothing parameters for each term.

• ...: additional options passed to the poisson.gam model. See the mgcv library for details.
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Examples

1. Basic Example

Create some count data:

> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> f0 <- function(x) 2 * sin(pi * x)

> f1 <- function(x) exp(2 * x)

> f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 *

+ x)^3 * (1 - x)^10

> f3 <- function(x) 0 * x

> f <- f0(x0) + f1(x1) + f2(x2)

> g <- exp(f/4); y <- rpois(rep(1, n), g)

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), model="poisson.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

Note that the plot() function can be used after model estimation and before simulation to view the
nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then simulate, summarize
and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and high values
(80th percentile) of the explanatory variable x3 while all the other variables are held at their default
(mean/mode) values.

> x.high <- setx(z.out, x3= quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x=x.high, x1=x.low)

> summary(s.out)

> plot(s.out)

>

3. Variations in GAM model specification. Note that setx and sim work as shown in the above examples
for any GAM model. As such, in the interest of parsimony, I will not re-specify the simulations of
quantities of interest.

An extra ridge penalty (useful with convergence problems):
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> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), H=diag(0.5,37),

+ model="poisson.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

>

Set the smoothing parameter for the first term, estimate the rest:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),sp=c(0.01,-1,-1,-1),

+ model="poisson.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>

Set lower bounds on smoothing parameters:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),min.sp=c(0.001,0.01,0,10),

+ model="poisson.gam", data=my.data)

> summary(z.out)

> plot(z.out, pages=1)

>
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A GAM with 3df regression spline term & 2 penalized terms:

> z.out <-zelig(y~s(x0,k=4,fx=TRUE,bs="tp")+s(x1,k=12)+s(x2,k=15),

+ model="poisson.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>

Model

GAM models use families the same way GLM models do: they specify the distribution and link function to
use in model fitting. In the case of poisson.gam a Poisson link function is used. Specifically, let Yi be the
dependent variable for observation i. Yi is thus the number of independent events that occur during a fixed
time period. This variable can take any non-negative integer.

• The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.
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• The systematic component is given by:

λi = exp

xiβ +

J∑
j=1

fj(Zj)

 .

where xi is the vector of explanatory variables, β is the vector of coefficients and fj(Zj) for j = 1, . . . J
is the set of smooth terms.

Generalized additive models (GAMs) are similar in many respects to generalized linear models (GLMs).
Specifically, GAMs are generally fit by penalized maximum likelihood estimation and GAMs have (or can
have) a parametric component identical to that of a GLM. The difference is that GAMs also include in their
linear predictors a specified sum of smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression splines. Two
techniques may be used to estimate smoothing parameters: Generalized Cross Validation (GCV),

n
D

(n−DF )2
, (42.1)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (42.2)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF is the effective
degrees of freedom of the model. The use of GCV or UBRE can be set by the user with the scale command
described in the “Additional Inputs” section and in either case, smoothing parameters are chosen to minimize
the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one or more) of quadratic
penalty coefficient matrices are constructed for each smooth term. Second, a model matrix is is obtained for
the parametric component of the GAM. These matrices are combined to produce a complete model matrix
and a set of penalty matrices for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then
used to estimate the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process is repeated until
convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).

Quantities of Interest

The quantities of interest for the poisson.gam model are the same as those for the standard Poisson regres-
sion.

• The expected value (qi$ev) for the poisson.gam model is the mean of simulations from the stochastic
component,

E(Y ) = λi = exp

xiβ J∑
j=1

fj(Zj)

 .

• The predicted value (qi$pr) is a random draw from the Poisson distribution defined by mean λi.

• The first difference (qi$fd) for the poisson.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "poisson.gam", data), then you may examine the available infor-
mation in z.out by using names(z.out), see the coefficients by using coefficients(z.out), and a default
summary of information through summary(z.out). Other elements available through the $ operator are
listed below.

• From the zelig() output stored in z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.

– model: the model matrix used.

• From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the parametric portion
of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics, and p-values for
the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite the Poisson General Addtitive Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.
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See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood [61]. Advanced users may wish
to refer to help(gam), [60], [59], and other documentation accompanying the mgcv package. All examples
are reproduced and extended from mgcv’s gam() help pages.
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Chapter 43

probit.gam

43.1 probit.gam: Generalized Additive Model for Dichotomous
Dependent Variables

This function runs a nonparametric Generalized Additive Model (GAM) for dichotomous dependent vari-
ables.

Syntax

> z.out <- zelig(y ~ x1 + s(x2), model = "probit.gam", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Where s() indicates a variable to be estimated via nonparametric smooth. All variables for which s() is
not specified, are estimated via standard parametric methods.

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for GAM models.

• method: Controls the fitting method to be used. Fitting methods are selected via a list environment
within method=gam.method(). See gam.method() for details.

• scale: Generalized Cross Validation (GCV) is used if scale = 0 (see the “Model” section for details)
except for Logit models where a Un-Biased Risk Estimator (UBRE) (also see the “Model” section for
details) is used with a scale parameter assumed to be 1. If scale is greater than 1, it is assumed to be
the scale parameter/variance and UBRE is used. If scale is negative GCV is used.

• knots: An optional list of knot values to be used for the construction of basis functions.

• H: A user supplied fixed quadratic penalty on the parameters of the GAM can be supplied with this as
its coefficient matrix. For example, ridge penalties can be added to the parameters of the GAM to aid
in identification on the scale of the linear predictor.

• sp: A vector of smoothing parameters for each term.

• ...: additional options passed to the probit.gam model. See the mgcv library for details.
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Examples

1. Basic Example

Create some count data:

> set.seed(0); n <- 400; sig <- 2;

> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)

> x2 <- runif(n, 0, 1); x3 <- runif(n, 0, 1)

> g <- (f-5)/3

> g <- binomial()$linkinv(g)

> y <- rbinom(g,1,g)

> my.data <- as.data.frame(cbind(y, x0, x1, x2, x3))

Estimate the model, summarize the results, and plot nonlinearities:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), model="probit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

Note that the plot() function can be used after model estimation and before simulation to view the
nonlinear relationships in the independent variables:

Set values for the explanatory variables to their default (mean/mode) values, then simulate, summarize
and plot quantities of interest:

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

> plot(s.out)

2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low values (20th percentile) and high values
(80th percentile) of the explanatory variable x3 while all the other variables are held at their default
(mean/mode) values.

> x.high <- setx(z.out, x3= quantile(my.data$x3, 0.8))

> x.low <- setx(z.out, x3 = quantile(my.data$x3, 0.2))

> s.out <- sim(z.out, x=x.high, x1=x.low)

> summary(s.out)

> plot(s.out)

>

3. Variations in GAM model specification. Note that setx and sim work as shown in the above examples
for any GAM model. As such, in the interest of parsimony, I will not re-specify the simulations of
quantities of interest.

An extra ridge penalty (useful with convergence problems):

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3), H=diag(0.5,37),

+ model="probit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1,residuals=TRUE)

>

Set the smoothing parameter for the first term, estimate the rest:
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> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),sp=c(0.01,-1,-1,-1),

+ model="probit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>

Set lower bounds on smoothing parameters:

> z.out <- zelig(y~s(x0)+s(x1)+s(x2)+s(x3),min.sp=c(0.001,0.01,0,10),

+ model="probit.gam", data=my.data)

> summary(z.out)

> plot(z.out, pages=1)

>

A GAM with 3df regression spline term & 2 penalized terms:

> z.out <-zelig(y~s(x0,k=4,fx=TRUE,bs="tp")+s(x1,k=12)+s(x2,k=15),

+ model="probit.gam", data=my.data)

> summary(z.out)

> plot(z.out,pages=1)

>
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Model

GAM models use families the same way GLM models do: they specify the distribution and link function to
use in model fitting. In the case of probit.gam a normal link function is used. Specifically, let Yi be the
binary dependent variable for observation i which takes the value of either 0 or 1.

• The normal distribution has stochastic component

Yi ∼ Bernoulli(πi)

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi = ΦΦΦ

xiβ +

J∑
j=1

fj(Zj)

 ,

where ΦΦΦ(µ) is the cumulative distribution function of the Normal distribution with mean 0 and unit
variance and fj(Zj) for j = 1, . . . J is the set of smooth terms.
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Generalized additive models (GAMs) are similar in many respects to generalized linear models (GLMs).
Specifically, GAMs are generally fit by penalized maximum likelihood estimation and GAMs have (or can
have) a parametric component identical to that of a GLM. The difference is that GAMs also include in their
linear predictors a specified sum of smooth functions.

In this GAM implementation, smooth functions are represented using penalized regression splines. Two
techniques may be used to estimate smoothing parameters: Generalized Cross Validation (GCV),

n
D

(n−DF )2
, (43.1)

or an Un-Biased Risk Estimator (UBRE) (which is effectively just a rescaled AIC),

D

n
+ 2s

DF

n− s
, (43.2)

where D is the deviance, n is the number of observations, s is the scale parameter, and DF is the effective
degrees of freedom of the model. The use of GCV or UBRE can be set by the user with the scale command
described in the “Additional Inputs” section and in either case, smoothing parameters are chosen to minimize
the GCV or UBRE score for the model.

Estimation for GAM models proceeds as follows: first, basis functions and a set (one or more) of quadratic
penalty coefficient matrices are constructed for each smooth term. Second, a model matrix is is obtained for
the parametric component of the GAM. These matrices are combined to produce a complete model matrix
and a set of penalty matrices for the smooth terms. Iteratively Reweighted Least Squares (IRLS) is then
used to estimate the model; at each iteration of the IRLS, a penalized weighted least squares model is run
and the smoothing parameters of that model are estimated by GCV or UBRE. This process is repeated until
convergence is achieved.

Further details of the GAM fitting process are given in Wood (2000, 2004, 2006).

Quantities of Interest

The quantities of interest for the probit.gam model are the same as those for the standard normal regression.

• The expected value (qi$ev) for the probit.gam model is the mean of simulations from the stochastic
component,

πi = ΦΦΦ

xiβ +

J∑
j=1

fj(Zj)

 .

• The predicted values (qi$pr) are draws from the Binomial distribution with mean equal to the simu-
lated expected value πi.

• The first difference (qi$fd) for the probit.gam model is defined as

FD = Pr(Y |w1)− Pr(Y |w)

for w = {X,Z}.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you run
z.out <- zelig(y ~ x, model = "probit.gam", data), then you may examine the available information
in z.out by using names(z.out), see the coefficients by using coefficients(z.out), and a default summary
of information through summary(z.out). Other elements available through the $ operator are listed below.

• From the zelig() output stored in z.out, you may extract:
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– coefficients: parameter estimates for the explanatory variables.

– fitted.values: the vector of fitted values for the explanatory variables.

– residuals: the working residuals in the final iteration of the IRLS fit.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-likelihood plus twice the
number of coefficients).

– method: the fitting method used.

– converged: logical indicating weather the model converged or not.

– smooth: information about the smoothed parameters.

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the input data frame.

– model: the model matrix used.

• From summary(z.out)(as well as from zelig()), you may extract:

– p.coeff: the coefficients of the parametric components of the model.

– se: the standard errors of the entire model.

– p.table: the coefficients, standard errors, and associated t statistics for the parametric portion
of the model.

– s.table: the table of estimated degrees of freedom, estimated rank, F statistics, and p-values for
the nonparametric portion of the model.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output stored in s.out, you may extract:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences in the expected probabilities simulated from x and x1.

How to Cite the Probit General Addtitive Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The gam.logit model is adapted from the mgcv package by Simon N. Wood [61]. Advanced users may wish
to refer to help(gam), [60], [59], and other documentation accompanying the mgcv package. All examples
are reproduced and extended from mgcv’s gam() help pages.
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Chapter 44

Generalized Estimating Equations

44.1 gamma.gee: Generalized Estimating Equation for Gamma Re-
gression

The GEE gamma is similar to standard gamma regression (appropriate when you have an uncensored,
positive-valued, continuous dependent variable such as the time until a parliamentary cabinet falls). Unlike
in gamma regression, GEE gamma allows for dependence within clusters, such as in longitudinal data,
although its use is not limited to just panel data. GEE models make no distributional assumptions but
require three specifications: a mean function, a variance function, and a “working” correlation matrix for the
clusters, which models the dependence of each observation with other observations in the same cluster. The
“working” correlation matrix is a T × T matrix of correlations, where T is the size of the largest cluster and
the elements of the matrix are correlations between within-cluster observations. The appeal of GEE models
is that it gives consistent estimates of the parameters and consistent estimates of the standard errors can be
obtained using a robust “sandwich” estimator even if the “working” correlation matrix is incorrectly specified.
If the “working” correlation matrix is correctly specified, GEE models will give more efficient estimates of
the parameters. GEE models measure population-averaged effects as opposed to cluster-specific effects (See
(author?) [64]).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered
within each cluster when appropriate.

Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a “sandwich” estima-
tor.

Use the following arguments to specify the structure of the “working” correlations within clusters:

• corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′. It assumes that
there is no correlation within the clusters and the model becomes equivalent to standard gamma
regression. The “working” correlation matrix is the identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the “working” correlation matrix
with the R argument rather than estimating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the number of periods t of
dependence. Choose this option when the correlations are assumed to be the same for observations
of the same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the number of
periods t of dependence. This option relaxes the assumption that the correlations are the same
for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′. Choose this

option if the correlations are assumed to be the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"), you must also

specify Mv = m, where m is the number of periods t of dependence. For example, the first order
autoregressive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′. In AR-1, observation
1 and observation 2 have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a function of how 1 and
2 are correlated (α) multiplied by how 2 and 3 are correlated (α). Observation 1 and 4 have a
correlation that is a function of the correlation between 1 and 2, 2 and 3, and 3 and 4, and so
forth.
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Sample “working” correlation for Stationary AR-1 (Mv=1)


1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′. No constraints

are placed on the correlations, which are then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only needs to be specified when
corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the
data. The argument is used only when corstr is "fixed". The input is a T ×T matrix of correlations,
where T is the size of the largest cluster.

Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(coalition)

Sorted variable identifying clusters

> coalition$cluster <- c(rep(c(1:62),5),rep(c(63),4))

> sorted.coalition <- coalition[order(coalition$cluster),]

Estimating model and presenting summary:

> z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee", id = "cluster", data = sorted.coalition, robust=TRUE, corstr="exchangeable")

> summary(z.out)

Setting the explanatory variables at their default values (mode for factor variables and mean for non-
factor variables), with numst2 set to the vector 0 = no crisis, 1 = crisis.

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the positive-valued, continuous dependent variable for
unit i at time t. Yi is a vector or cluster of correlated data where yit is correlated with yit′ for some or all
t, t′. Note that the model assumes correlations within i but independence across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)
Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE models make no distribu-
tional assumptions and only require three specifications: a mean function, a variance function, and a
correlation structure.

• The systematic component is the mean function, given by:

λit =
1

xitβ

where xit is the vector of k explanatory variables for unit i at time t and β is the vector of coefficients.
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• The variance function is given by:

Vit = λ2
it =

1

(xitβ)2

• The correlation structure is defined by a T × T “working” correlation matrix, where T is the size of
the largest cluster. Users must specify the structure of the “working” correlation matrix a priori. The
“working” correlation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λ2
it as the tth diagonal element,

Ri(α) is the “working” correlation matrix, and φ is a scale parameter. The parameters are then
estimated via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and correlation structure are
incorrectly specified, then GEE models provide consistent estimates of the parameters and thus the
mean function as well, while consistent estimates of the standard errors can be obtained via a robust
“sandwich” estimator. Similarly, if the mean and variance are correctly specified but the correlation
structure is incorrectly specified, the parameters can be estimated consistently and the standard errors
can be estimated consistently with the sandwich estimator. If all three are specified correctly, then the
estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard errors when the correlations
are specified incorrectly only if the number of units i is relatively large and the number of repeated
periods t is relatively small. Otherwise, one should use the “näıve” model-based standard errors, which
assume that the specified correlations are close approximations to the true underlying correlations.

Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE models. If you must bootstrap,
bootstrapping should be done within clusters, which is not currently supported in Zelig. For conditional
prediction models, data should be matched within clusters.

• The expected values (qi$ev) for the GEE gamma model is the mean:

E(Y ) = λc =
1

xcβ
,

given draws of β from its sampling distribution, where xc is a vector of values, one for each independent
variable, chosen by the user.

• The first difference (qi$fd) for the GEE gamma model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control (trit =
0) groups. Variation in the simulations are due to uncertainty in simulating E[Yit(trit = 0)], the
counterfactual expected value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is switched to trit = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "gamma.gee", id, data), then you may examine the available in-
formation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and z-
statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Gamma GEE Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lumley and Brian
Ripley. Advanced users may wish to refer to help(gee) and help(family). Sample data are from [25].
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Chapter 45

logit.gee

45.1 logit.gee: Generalized Estimating Equation for Logistic Re-
gression

The GEE logit estimates the same model as the standard logistic regression (appropriate when you have
a dichotomous dependent variable and a set of explanatory variables). Unlike in logistic regression, GEE
logit allows for dependence within clusters, such as in longitudinal data, although its use is not limited to
just panel data. The user must first specify a “working” correlation matrix for the clusters, which models
the dependence of each observation with other observations in the same cluster. The “working” correlation
matrix is a T × T matrix of correlations, where T is the size of the largest cluster and the elements of
the matrix are correlations between within-cluster observations. The appeal of GEE models is that it gives
consistent estimates of the parameters and consistent estimates of the standard errors can be obtained using a
robust “sandwich” estimator even if the “working” correlation matrix is incorrectly specified. If the “working”
correlation matrix is correctly specified, GEE models will give more efficient estimates of the parameters.
GEE models measure population-averaged effects as opposed to cluster-specific effects (See (author?) [64]).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered
within each cluster when appropriate.

Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a “sandwich” estima-
tor.

Use the following arguments to specify the structure of the “working” correlations within clusters:

• corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′. It assumes that
there is no correlation within the clusters and the model becomes equivalent to standard logistic
regression. The “working” correlation matrix is the identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the “working” correlation matrix
with the R argument rather than estimating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the number of periods t of
dependence. Choose this option when the correlations are assumed to be the same for observations
of the same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the number of
periods t of dependence. This option relaxes the assumption that the correlations are the same
for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′. Choose this

option if the correlations are assumed to be the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"), you must also

specify Mv = m, where m is the number of periods t of dependence. For example, the first order
autoregressive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′. In AR-1, observation
1 and observation 2 have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a function of how 1 and
2 are correlated (α) multiplied by how 2 and 3 are correlated (α). Observation 1 and 4 have a
correlation that is a function of the correlation between 1 and 2, 2 and 3, and 3 and 4, and so
forth.
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Sample “working” correlation for Stationary AR-1 (Mv=1)


1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′. No constraints

are placed on the correlations, which are then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only needs to be specified when
corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the
data. The argument is used only when corstr is "fixed". The input is a T ×T matrix of correlations,
where T is the size of the largest cluster.

Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200),10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster),]

Estimating parameter values for the logistic regression:

> z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep", Mv=3)

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile) and high edu-
cation (75th percentile) while all the other variables held at their default values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure

> corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "fixed", R=corr.mat)

Viewing the regression output:

> summary(z.out2)

The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent variable for unit i at time t. Yi
is a vector or cluster of correlated data where yit is correlated with yit′ for some or all t, t′. Note that the
model assumes correlations within i but independence across i.
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• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)
Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE models make no distribu-
tional assumptions and only require three specifications: a mean function, a variance function, and a
correlation structure.

• The systematic component is the mean function, given by:

πit =
1

1 + exp(−xitβ)

where xit is the vector of k explanatory variables for unit i at time t and β is the vector of coefficients.

• The variance function is given by:
Vit = πit(1− πit)

• The correlation structure is defined by a T × T “working” correlation matrix, where T is the size of
the largest cluster. Users must specify the structure of the “working” correlation matrix a priori. The
“working” correlation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = πit(1− πit) as the tth diagonal
element, Ri(α) is the “working” correlation matrix, and φ is a scale parameter. The parameters are
then estimated via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and correlation structure are
incorrectly specified, then GEE models provide consistent estimates of the parameters and thus the
mean function as well, while consistent estimates of the standard errors can be obtained via a robust
“sandwich” estimator. Similarly, if the mean and variance are correctly specified but the correlation
structure is incorrectly specified, the parameters can be estimated consistently and the standard errors
can be estimated consistently with the sandwich estimator. If all three are specified correctly, then the
estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard errors when the correlations
are specified incorrectly only if the number of units i is relatively large and the number of repeated
periods t is relatively small. Otherwise, one should use the “näıve” model-based standard errors, which
assume that the specified correlations are close approximations to the true underlying correlations.

Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE models. If you must bootstrap,
bootstrapping should be done within clusters, which is not currently supported in Zelig. For conditional
prediction models, data should be matched within clusters.

• The expected values (qi$ev) for the GEE logit model are simulations of the predicted probability of a
success:

E(Y ) = πc =
1

1 + exp(−xcβ)
,

given draws of β from its sampling distribution, where xc is a vector of values, one for each independent
variable, chosen by the user.
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• The first difference (qi$fd) for the GEE logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control (trit =
0) groups. Variation in the simulations are due to uncertainty in simulating E[Yit(trit = 0)], the
counterfactual expected value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "logit.gee", id, data), then you may examine the available in-
formation in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and z-
statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.
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How to Cite the Logit GEE Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lumley and Brian
Ripley. Advanced users may wish to refer to help(gee) and help(family). Sample data are from [28].
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Chapter 46

probit.gee

46.1 probit.gee: Generalized Estimating Equation for Probit Re-
gression

The GEE probit estimates the same model as the standard probit regression (appropriate when you have
a dichotomous dependent variable and a set of explanatory variables). Unlike in probit regression, GEE
probit allows for dependence within clusters, such as in longitudinal data, although its use is not limited to
just panel data. The user must first specify a “working” correlation matrix for the clusters, which models
the dependence of each observation with other observations in the same cluster. The “working” correlation
matrix is a T × T matrix of correlations, where T is the size of the largest cluster and the elements of
the matrix are correlations between within-cluster observations. The appeal of GEE models is that it gives
consistent estimates of the parameters and consistent estimates of the standard errors can be obtained using a
robust “sandwich” estimator even if the “working” correlation matrix is incorrectly specified. If the “working”
correlation matrix is correctly specified, GEE models will give more efficient estimates of the parameters.
GEE models measure population-averaged effects as opposed to cluster-specific effects (See (author?) [64]).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered
within each cluster when appropriate.

Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a “sandwich” estima-
tor.

Use the following arguments to specify the structure of the “working” correlations within clusters:

• corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′. It assumes that
there is no correlation within the clusters and the model becomes equivalent to standard probit
regression. The “working” correlation matrix is the identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the “working” correlation matrix
with the R argument rather than estimating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the number of periods t of
dependence. Choose this option when the correlations are assumed to be the same for observations
of the same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the number of
periods t of dependence. This option relaxes the assumption that the correlations are the same
for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′. Choose this

option if the correlations are assumed to be the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"), you must also

specify Mv = m, where m is the number of periods t of dependence. For example, the first order
autoregressive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′. In AR-1, observation
1 and observation 2 have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a function of how 1 and
2 are correlated (α) multiplied by how 2 and 3 are correlated (α). Observation 1 and 4 have a
correlation that is a function of the correlation between 1 and 2, 2 and 3, and 3 and 4, and so
forth.
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Sample “working” correlation for Stationary AR-1 (Mv=1)


1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′. No constraints

are placed on the correlations, which are then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only needs to be specified when
corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the
data. The argument is used only when corstr is "fixed". The input is a T ×T matrix of correlations,
where T is the size of the largest cluster.

Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200),10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster),]

Estimating parameter values:

> z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep", Mv=3)

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th percentile) and high edu-
cation (75th percentile) while all the other variables held at their default values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure

> corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "fixed", R=corr.mat)

Viewing the regression output:

> summary(z.out2)

The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent variable for unit i at time t. Yi
is a vector or cluster of correlated data where yit is correlated with yit′ for some or all t, t′. Note that the
model assumes correlations within i but independence across i.
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• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)
Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE models make no distribu-
tional assumptions and only require three specifications: a mean function, a variance function, and a
correlation structure.

• The systematic component is the mean function, given by:

πit = Φ(xitβ)

where Φ(µ) is the cumulative distribution function of the Normal distribution with mean 0 and unit
variance, xit is the vector of k explanatory variables for unit i at time t and β is the vector of coefficients.

• The variance function is given by:
Vit = πit(1− πit)

• The correlation structure is defined by a T × T “working” correlation matrix, where T is the size of
the largest cluster. Users must specify the structure of the “working” correlation matrix a priori. The
“working” correlation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = πit(1− πit) as the tth diagonal
element, Ri(α) is the “working” correlation matrix, and φ is a scale parameter. The parameters are
then estimated via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and correlation structure are
incorrectly specified, then GEE models provide consistent estimates of the parameters and thus the
mean function as well, while consistent estimates of the standard errors can be obtained via a robust
“sandwich” estimator. Similarly, if the mean and variance are correctly specified but the correlation
structure is incorrectly specified, the parameters can be estimated consistently and the standard errors
can be estimated consistently with the sandwich estimator. If all three are specified correctly, then the
estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard errors when the correlations
are specified incorrectly only if the number of units i is relatively large and the number of repeated
periods t is relatively small. Otherwise, one should use the “näıve” model-based standard errors, which
assume that the specified correlations are close approximations to the true underlying correlations.

Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE models. If you must bootstrap,
bootstrapping should be done within clusters, which is not currently supported in Zelig. For conditional
prediction models, data should be matched within clusters.

• The expected values (qi$ev) for the GEE probit model are simulations of the predicted probability of
a success:

E(Y ) = πc = Φ(xcβ),

given draws of β from its sampling distribution, where xc is a vector of values, one for each independent
variable, chosen by the user.
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• The first difference (qi$fd) for the GEE probit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control (trit =
0) groups. Variation in the simulations are due to uncertainty in simulating E[Yit(trit = 0)], the
counterfactual expected value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "probit.gee", id, data), then you may examine the available
information in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and z-
statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$rr: the simulated risk ratio for the expected probabilities simulated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.
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How to Cite the Gamma GEE Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lumley and Brian
Ripley. Advanced users may wish to refer to help(gee) and help(family). Sample data are from [28].
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Chapter 47

poisson.gee

47.1 poisson.gee: Generalized Estimating Equation for Poisson
Regression

The GEE poisson estimates the same model as the standard poisson regression (appropriate when your
dependent variable represents the number of independent events that occur during a fixed period of time).
Unlike in poisson regression, GEE poisson allows for dependence within clusters, such as in longitudinal
data, although its use is not limited to just panel data. The user must first specify a “working” correlation
matrix for the clusters, which models the dependence of each observation with other observations in the
same cluster. The “working” correlation matrix is a T × T matrix of correlations, where T is the size of
the largest cluster and the elements of the matrix are correlations between within-cluster observations. The
appeal of GEE models is that it gives consistent estimates of the parameters and consistent estimates of
the standard errors can be obtained using a robust “sandwich” estimator even if the “working” correlation
matrix is incorrectly specified. If the “working” correlation matrix is correctly specified, GEE models will
give more efficient estimates of the parameters. GEE models measure population-averaged effects as opposed
to cluster-specific effects (See (author?) [64]).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered
within each cluster when appropriate.

Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a “sandwich” estima-
tor.

Use the following arguments to specify the structure of the “working” correlations within clusters:

• corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′. It assumes that
there is no correlation within the clusters and the model becomes equivalent to standard poisson
regression. The “working” correlation matrix is the identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the “working” correlation matrix
with the R argument rather than estimating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the number of periods t of
dependence. Choose this option when the correlations are assumed to be the same for observations
of the same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the number of
periods t of dependence. This option relaxes the assumption that the correlations are the same
for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′. Choose this

option if the correlations are assumed to be the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"), you must also

specify Mv = m, where m is the number of periods t of dependence. For example, the first order
autoregressive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′. In AR-1, observation
1 and observation 2 have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a function of how 1 and
2 are correlated (α) multiplied by how 2 and 3 are correlated (α). Observation 1 and 4 have a
correlation that is a function of the correlation between 1 and 2, 2 and 3, and 3 and 4, and so
forth.
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Sample “working” correlation for Stationary AR-1 (Mv=1)


1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′. No constraints

are placed on the correlations, which are then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only needs to be specified when
corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the
data. The argument is used only when corstr is "fixed". The input is a T ×T matrix of correlations,
where T is the size of the largest cluster.

Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(sanction)

Variable identifying clusters

> sanction$cluster <- c(rep(c(1:15),5),rep(c(16),3))

Sorting by cluster

> sorted.sanction <- sanction[order(sanction$cluster),]

Estimating model and presenting summary:

> z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster", data = sorted.sanction, robust=TRUE, corstr="exchangeable")

> summary(z.out)

Set explanatory variables to their default values:

> x.out <- setx(z.out)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the dependent variable of the number of independent
events for a fixed period of time for unit i at time t. Yi is a vector or cluster of correlated data where yit is
correlated with yit′ for some or all t, t′. Note that the model assumes correlations within i but independence
across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)
Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE models make no distribu-
tional assumptions and only require three specifications: a mean function, a variance function, and a
correlation structure.

• The systematic component is the mean function, given by:

λit = exp(xitβ)

where xit is the vector of k explanatory variables for unit i at time t and β is the vector of coefficients.
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• The variance function is given by:
Vit = λit

• The correlation structure is defined by a T × T “working” correlation matrix, where T is the size of
the largest cluster. Users must specify the structure of the “working” correlation matrix a priori. The
“working” correlation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λit as the tth diagonal element,
Ri(α) is the “working” correlation matrix, and φ is a scale parameter. The parameters are then
estimated via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and correlation structure are
incorrectly specified, then GEE models provide consistent estimates of the parameters and thus the
mean function as well, while consistent estimates of the standard errors can be obtained via a robust
“sandwich” estimator. Similarly, if the mean and variance are correctly specified but the correlation
structure is incorrectly specified, the parameters can be estimated consistently and the standard errors
can be estimated consistently with the sandwich estimator. If all three are specified correctly, then the
estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard errors when the correlations
are specified incorrectly only if the number of units i is relatively large and the number of repeated
periods t is relatively small. Otherwise, one should use the “näıve” model-based standard errors, which
assume that the specified correlations are close approximations to the true underlying correlations.

Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE models. If you must bootstrap,
bootstrapping should be done within clusters, which is not currently supported in Zelig. For conditional
prediction models, data should be matched within clusters.

• The expected values (qi$ev) for the GEE poisson model is the mean of simulations from the stochastic
component:

E(Y ) = λc = exp(xcβ),

given draws of β from its sampling distribution, where xc is a vector of values, one for each independent
variable, chosen by the user.

• The first difference (qi$fd) for the GEE poisson model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control (trit =
0) groups. Variation in the simulations are due to uncertainty in simulating E[Yit(trit = 0)], the
counterfactual expected value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is switched to trit = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "poisson.gee", id, data), then you may examine the available
information in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, λit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and z-
statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Poisson GEE Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lumley and Brian
Ripley. Advanced users may wish to refer to help(gee) and help(family). Sample data are from [39].
Please inquire with Lisa Martin before publishing results from these data, as this dataset includes errors that
have since been corrected.
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Chapter 48

normal.gee

48.1 normal.gee: Generalized Estimating Equation for Normal
Regression

The GEE normal estimates the same model as the standard normal regression. Unlike in normal regression,
GEE normal allows for dependence within clusters, such as in longitudinal data, although its use is not
limited to just panel data. The user must first specify a “working” correlation matrix for the clusters, which
models the dependence of each observation with other observations in the same cluster. The “working”
correlation matrix is a T × T matrix of correlations, where T is the size of the largest cluster and the
elements of the matrix are correlations between within-cluster observations. The appeal of GEE models is
that it gives consistent estimates of the parameters and consistent estimates of the standard errors can be
obtained using a robust “sandwich” estimator even if the “working” correlation matrix is incorrectly specified.
If the “working” correlation matrix is correctly specified, GEE models will give more efficient estimates of
the parameters. GEE models measure population-averaged effects as opposed to cluster-specific effects (See
(author?) [64]).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and should be ordered
within each cluster when appropriate.

Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a “sandwich” estima-
tor.

Use the following arguments to specify the structure of the “working” correlations within clusters:

• corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′. It assumes that
there is no correlation within the clusters and the model becomes equivalent to standard normal
regression. The “working” correlation matrix is the identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the “working” correlation matrix
with the R argument rather than estimating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the number of periods t of
dependence. Choose this option when the correlations are assumed to be the same for observations
of the same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the number of
periods t of dependence. This option relaxes the assumption that the correlations are the same
for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′. Choose this

option if the correlations are assumed to be the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"), you must also

specify Mv = m, where m is the number of periods t of dependence. For example, the first order
autoregressive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′. In AR-1, observation
1 and observation 2 have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a function of how 1 and
2 are correlated (α) multiplied by how 2 and 3 are correlated (α). Observation 1 and 4 have a
correlation that is a function of the correlation between 1 and 2, 2 and 3, and 3 and 4, and so
forth.
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Sample “working” correlation for Stationary AR-1 (Mv=1)


1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′. No constraints

are placed on the correlations, which are then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only needs to be specified when
corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating it from the
data. The argument is used only when corstr is "fixed". The input is a T ×T matrix of correlations,
where T is the size of the largest cluster.

Examples

1. Example with AR-1 Dependence

Attaching the sample turnout dataset:

> data(macro)

Estimating model and presenting summary:

> z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee", id = "country", data = macro, robust=TRUE, corstr="AR-M", Mv=1)

> summary(z.out)

Set explanatory variables to their default (mean/mode) values, with high (80th percentile) and low
(20th percentile) values:

> x.high <- setx(z.out, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the continuous dependent variable for unit i at time t.
Yi is a vector or cluster of correlated data where yit is correlated with yit′ for some or all t, t′. Note that the
model assumes correlations within i but independence across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | µi)
Yit ∼ g(yit | µit)

where f and g are unspecified distributions with means µi and µit. GEE models make no distribu-
tional assumptions and only require three specifications: a mean function, a variance function, and a
correlation structure.

• The systematic component is the mean function, given by:

µit = xitβ

where xit is the vector of k explanatory variables for unit i at time t and β is the vector of coefficients.
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• The variance function is given by:
Vit = 1

• The correlation structure is defined by a T × T “working” correlation matrix, where T is the size of
the largest cluster. Users must specify the structure of the “working” correlation matrix a priori. The
“working” correlation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T ×T diagonal matrix with the variance function Vit = 1 as the tth diagonal element (in
the case of GEE normal, Ai is the identity matrix), Ri(α) is the “working” correlation matrix, and φ
is a scale parameter. The parameters are then estimated via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and correlation structure are
incorrectly specified, then GEE models provide consistent estimates of the parameters and thus the
mean function as well, while consistent estimates of the standard errors can be obtained via a robust
“sandwich” estimator. Similarly, if the mean and variance are correctly specified but the correlation
structure is incorrectly specified, the parameters can be estimated consistently and the standard errors
can be estimated consistently with the sandwich estimator. If all three are specified correctly, then the
estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard errors when the correlations
are specified incorrectly only if the number of units i is relatively large and the number of repeated
periods t is relatively small. Otherwise, one should use the “näıve” model-based standard errors, which
assume that the specified correlations are close approximations to the true underlying correlations.

Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE models. If you must bootstrap,
bootstrapping should be done within clusters, which is not currently supported in Zelig. For conditional
prediction models, data should be matched within clusters.

• The expected values (qi$ev) for the GEE normal model is the mean of simulations from the stochastic
component:

E(Y ) = µc = xcβ,

given draws of β from its sampling distribution, where xc is a vector of values, one for each independent
variable, chosen by the user.

• The first difference (qi$fd) for the GEE normal model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect (att.ev) for the treatment
group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control (trit =
0) groups. Variation in the simulations are due to uncertainty in simulating E[Yit(trit = 0)], the
counterfactual expected value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is switched to trit = 0.
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Output Values

The output of each Zelig command contains useful information which you may view. For example, if you
run z.out <- zelig(y ~ x, model = "normal.gee", id, data), then you may examine the available
information in z.out by using names(z.out), see the coefficients by using z.out$coefficients, and a
default summary of information through summary(z.out). Other elements available through the $ operator
are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, µit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors, p-values, and z-
statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of interest arranged as matrices
indexed by simulation × x-observation (for more than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values specified in x and
x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from conditional
prediction models.

How to Cite the Normal GEE Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical Software,” http:

//GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Framework for Statistical
Analysis and Development.” Journal of Computational and Graphical Statistics, Vol. 17, No.
4 (December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lumley and Brian
Ripley. Advanced users may wish to refer to help(gee) and help(family). Sample data are from [28].
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Chapter 49

Frequently Asked Questions

49.1 For All Zelig Users

How do I cite Zelig?

We would appreciate if you would cite Zelig as:

Imai, Kosuke, Gary King and Olivia Lau. 2006. “Zelig: Everyone’s Statistical Software,” http:

//GKing.Harvard.Edu/zelig.

Please also cite the contributors for the models or methods you are using. These citations can be found in
the contributors section of each model or command page.

Why can’t I install Zelig?

You must be connected to the internet to install packages from web depositories. In addition, there are a
few platform-specific reasons why you may have installation problems:

• On Windows: If you are using the very latest version of R, you may not be able to install Zelig until
we update Zelig to work on the latest release of R. If you wish to install Zelig in the interim, check
the Zelig release notes (Section 50.1) and download the appropriate version of R to work with the last
release of Zelig. You may have to manually download and install Zelig.

• On Mac: If the latest version of Zelig is not yet available at CRAN but you would like to install it on
your Mac, try typing the following at your R prompt:

install.packages("Zelig", repos = "http://gking.harvard.edu", type = "source")

• On Mac or Linux systems: If you get the following warning message at the end of your installation:

Installation of package VGAM had non-zero exit status in ...

this means that you were not able to install VGAM properly. Make sure that you have the g77
Fortran compiler. For PowerPC Macs, download g77 from http://hpc.sourceforge.net). For Intel
Macs, download the xcode Apple developer tools. After installation, try to install Zelig again.

Why can’t I install R?

If you have problems installing R (rather than Zelig), you should check the R FAQs for your platform. If
you still have problems, you can search the archives for the R help mailing list, or email the list directly at
r-help@stat.math.ethz.ch.
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Why can’t I load data?

When you start R, you need to specify your working directory. In linux R, this is done pretty much
automatically when you start R, whether within ESS or in a terminal window. In Windows R, you may wish
to specify a working directory so that you may load data without typing in long directory paths to your data
files, and it is important to remember that Windows R uses the Linux directory delimiter. That is, if you
right click and select the “Properties” link on a Windows file, the slashes are backslashes (\), but Windows R
uses forward slashes (/) in directory paths. Thus, the Windows link may be C:\Program Files\R\R-2.5.1\,
but you would type C:/Program Files/R/R-2.5.1/ in Windows R.

When you start R in Windows, the working directory is by default the directory in which the R executible
is located.

# Print your current working directory.

> getwd()

# To read data not located in your working directory.

> data <- read.table("C:/Program Files/R/newwork/mydata.tab")

# To change your working directory.

> setwd("C:/Program Files/R/newwork")

# Reading data in your working directory.

> data <- read.data("mydata.tab")

Once you have set the working directory, you no longer need to type the entire directory path.

Where can I find old versions of Zelig?

For some replications, you may require older versions of Zelig.

• Windows users may find old binaries at http://gking.harvard.edu/bin/windows/contrib/ and
selecting the appropriate version of R.

• Linux and MacOSX users may find source files at http://gking.harvard.edu/src/contrib/

If you want an older version of Zelig because you are using an older version of R, we strongly suggest that
you update R and install the latest version of Zelig.

Some Zelig functions don’t work for me!

If this is a new phenomenon, there may be functions in your namespace that are overwriting Zelig functions.
In particular, if you have a function called zelig, setx, or sim in your workspace, the corresponding functions
in Zelig will not work. Rather than deleting things that you need, R will tell you the following when you
load the Zelig library:

Attaching package: 'Zelig'
The following object(s) are masked _by_ .GlobalEnv :

sim

In this case, simply rename your sim function to something else and load Zelig again:

> mysim <- sim

> detach(package:Zelig)

> library(Zelig)
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Who can I ask for help? How do I report bugs?

If you find a bug, or cannot figure something out, please follow these steps: (1) Reread the relevant section
of the documentation. (2) Update Zelig if you don’t have the current version. (3) Rerun the same code and
see if the bug has been fixed. (4) Check our list of frequently asked questions. (5) Search or browse messages
to find a discussion of your issue on the zelig listserv.

If none of these work, then if you haven’t already, please (6) subscribe to the Zelig listserv and (7) send
your question to the listserv at zelig@lists.gking.harvard.edu. Please explain exactly what you did and
include the full error message, including the traceback(). You should get an answer from the developers or
another user in short order.

How do I increase the memory for R?

Windows users may get the error that R has run out of memory.
If you have R already installed and subsequently install more RAM, you may have to reinstall R in order

to take advantage of the additional capacity.
You may also set the amount of available memory manually. Close R, then right-click on your R program

icon (the icon on your desktop or in your programs directory). Select “Properties”, and then select the
“Shortcut” tab. Look for the “Target” field and after the closing quotes around the location of the R
executible, add

--max-mem-size=500M

as shown in the figure below. You may increase this value up to 2GB or the maximum amount of physical
RAM you have installed.

If you get the error that R cannot allocate a vector of length x, close out of R and add the following line
to the “Target” field:

--max-vsize=500M

or as appropriate.
You can always check to see how much memory R has available by typing at the R prompt

> round(memory.limit()/2^20, 2)

which gives you the amount of available memory in MB.

Why doesn’t the pdf print properly?

Zelig uses several special LATEX environments. If the pdf looks right on the screen, there are two possible
reasons why it’s not printing properly:

• Adobe Acrobat isn’t cleaning up the document. Updating to Acrobat Reader 6.0.1 or higher should
solve this problem.

• Your printer doesn’t support PostScript Type 3 fonts. Updating your print driver should take care of
this problem.

R is neat. How can I find out more?

R is a collective project with contributors from all over the world. Their website (http://www.r-project.org)
has more information on the R project, R packages, conferences, and other learning material.

In addition, there are several canonical references which you may wish to peruse:

Venables, W.N. and B.D. Ripley. 2002. Modern Applied Statistics with S. 4th Ed. Springer-
Verlag.

Venables, W.N. and B.D. Ripley. 2000. S Programming. Springer-Verlag.
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49.2 For Zelig Contributors

Where can I find the source code for Zelig?

Zelig is distributed under the GNU General Public License, Version 2. After installation, the source
code is located in your R library directory. For Linux users who have followed our installation exam-
ple, this is ~/.R/library/Zelig/. For Windows users under R 2.5.1, this is by default C:\Program
Files\R\R-2.5.1\library\Zelig\. For Macintosh users, this is ~/Library/R/library/Zelig/.

In addition, you may download the latest Zelig source code as a tarball’ed directory from http://gking.harvard.edu/src/contrib/.
(This makes it easier to distinguish functions which are run together during installation.)

How can I make my R programs run faster?

Unlike most commercial statistics programs which rely on precompiled and pre-packaged routines, R allows
users to program functions and run them in the same environment. If you notice a perceptible lag when
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running your R code, you may improve the performance of your programs by taking the following steps:

• Reduce the number of loops. If it is absolutely necessary to run loops in loops, the inside loop should
have the most number of cycles because it runs faster than the outside loop. Frequently, you can
eliminate loops by using vectors rather than scalars. Most R functions deal with vectors in an efficient
and mathematically intuitive manner.

• Do away with loops altogether. You can vectorize functions using the apply, mapply(), sapply(),
lapply(), and replicate() functions. If you specify the function passed to the above *apply()

functions properly, the R consensus is that they should run significantly faster than loops in general.

• You can compile your code using C or Fortran. R is not compiled, but can use bits of precompiled code
in C or Fortran, and calls that code seamlessly from within R wrapper functions (which pass input
from the R function to the C code and back to R). Thus, almost every regression package includes C or
Fortran algorithms, which are locally compiled in the case of Linux systems or precompiled in the case
of Windows distributions. The recommended Linux compilers are gcc for C and g77 for Fortran, so
you should make sure that your code is compatible with those standards to achieve the widest possible
distribution.

Which compilers can I use with R and Zelig?

In general, the C or Fortran algorithms in your package should compile for any platform. While Windows R
packages are distributed as compiled binaries, Linux R compiles packages locally during installation. Thus,
to ensure the widest possible audience for your package, you should make sure that your code will compile
on gcc (for C and C++), or on g77 (for Fortran).
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Chapter 50

What’s New?

50.1 What’s New: Zelig Release Notes

Releases listed as“stable releases”have been tested against prior versions of Zelig for consistency and accuracy.
Testing distributions may contain bugs, but are usually replaced by stable releases within a few days.

• 4.0-3 (May 25, 2010): Testing Release for R 2.12

Extensive changes including:

– Added Roxygen-compliant in-source documentation

– demo(HelloWorld) now produces an informative demo on creating a simple statistical package

– Removed the approximately half the models from Zelig

– Moved 22 models from the “core” package to more focused packages

– Added ’zelig.skeleton’ method for rapidly creating Zelig packages

– Resolved error messages, warnings, and notes from R CMD check and R CMD build

– Moved 500+ page Zelig documentation

– Temporarily disabling bootstrapping from the sim method

– Temporarily removing Average Treatment Effects from the generalized linear models

• 3.4-8 (Jan 1, 2010): Stable release for R 2.10

Fixed problem with survival regressions and robust standard erros (assuming survival >= 2.35-8)
Fixed vignette documentation

• 3.4-7 (Oct 23, 2009): Stable release for R 2.9.2

Fixed .net models

• 3.4-6 (May 22, 2009): Stable release for R 2.9

Added quantile regression model (quantile)
Changed the digits option (thanks to Matthias Studer)
Removed the old mloglm model (Multinomial Log-Linear Regression)

• 3.4-5 (Mar 13, 2009): A bug fixed in plot.ci() (thanks to Ken Benoit)
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• 3.4-4 (Mar 4, 2009): weights are incorporated into ologit, oprobit, and negbin models (thanks to
Casey Klofstad)

• 3.4-2 (Feb 10, 2009): Small fixes in the Rd files as required by new check in CRAN

• 3.4-0 (Jan 2, 2009): Bug-fix release for R 2.8.0 Changed the Zelig citation
Fixed zelig() signature to ensure that the formals() work properly and all arguments remain docu-
mented. ”save.data” and ”cite” were not documented (thanks to Micah Altman)
Fixed some typos in model family names (thanks to Kevin Condon)
Fixed the predicted values in gam.* models
Fixed the plot functions in gam.* models

• 3.4-0 (Oct 27, 2008): Stable release for R 2.8.0. zelig() now takes a ”citation” argument. If ”citation”
is ”true” (default) the model citation is printed in each zelig run
Introduced two new elemetns on the describe.mymodel function: authors and year
Fixed the problems with lme4 package. Note that there is still a problem with simulation step of
”gamma.mixed” model. We are still working on that.
Fixed the bug with ”gam” models (wrong predicted values)
Fixed the bug with when zelig model name was provided from a variable (reported from Jeroen)

• 3.3-1 (June 12, 2008): Bug-fix release for R.2.7.0. A bug fix for plot.ci() so that it works with mixed
effects models (thanks to Keith Schnakenberg).

• 3.3-0 (June 03, 2008): Stable release for R.2.7.0. Updated coxph so that it handles time-varying
covariates (contributed by Patrick Lam). A new plot function for survival models (contributed by
John Graves). First version dependencies are as follows:

”MASS” ”7.2-41”
”nlme” ”3.1-87”
”survival” ”2.34”
”coda” ”0.13-1”
”sna” ”1.5”
”boot” ”1.2-31”
”nnet” ”7.2-41”
”zoo” ”1.5-0”
”sandwich” ”2.1-0”
”lme4” ”0.99875-9”
”systemfit” ”1.0-2”
”VGAM” ”0.7-5”
”MCMCpack” ”0.8-2”
”mvtnorm” ”0.8-3”
”gee” ”4.13-13”
”mgcv” ”1.3-29”
”anchors” ”1.9-2”
”survey” ”3.6-13”

• 3.2-1 (April 10, 2008): Bug-fix release for R.2.6.0-2.6.2. Fixed the setx() bug for multiply imputed
data sets. (Thanks to Steve Shewfelt and Keith Schnakenberg.)

• 3.2 (April 3, 2008): Stable release for R 2.6.0-2.6.2. Adding models for survey data – normal.survey,
logit.survey, probit.survey, poisson.survey, gamma.survey. First version dependencies are as
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follows:
survey 3.6-13
MASS 7.2-34
nlme 3.1-86
survival 2.34
boot 1.2-30
nnet 7.2-34
zoo 1.4-0
sandwich 2.0-2
sna 1.4
lme4 0.99875-9
coda 0.12-1
systemfit 0.8-5
VGAM 0.7-4
MCMCpack 0.8-2
mvtnorm 0.8-1
gee 4.13-13
mgcv 1.3-29
anchors 2.0

• 3.1-1 (January 10, 2008): Bug-fix release for R 2.6.0-2.6.1. Fixed bugs, improved the code and the
documentation for mixed effects models. Thanks to Gregor Gorjanc. Fixed systemfit models due to
some API changes in systemfit package. Added some other models (including *.mixed models) in
plot.ci

• 3.1 (November 30, 2007): Stable release for R 2.6.0-2.6.1. Adding many new models such as aov,
chopit, coxph, generalized linear mixed-effects models, and gee models. Also, several bugs are fixed.
First version dependencies are as follows:

MASS 7.2-34
nlme 3.1-86
survival 2.34
boot 1.2-30
nnet 7.2-34
zoo 1.4-0
sandwich 2.0-2
sna 1.4
lme4 0.99875-9
coda 0.12-1
systemfit 0.8-5
VGAM 0.7-4
MCMCpack 0.8-2
mvtnorm 0.8-1
gee 4.13-13
mgcv 1.3-29
anchors 2.0

• 3.0-1 – 3.0-6: Minor bug fixes. Stable release for R 2.5.0-2.5.1.

• 3.0 (July 20, 2007): Stable release for R 2.5.0-2.5.1. Introducing vignettes for each model. Improv-
ing documentation in the Zelig web site, improving citation style, improving help.zelig() function,
adding gam models, social network methods, logit gee model, adding support for cross-validation pro-
cedures and diagnostics tools, etc.

• 2.8-3 (May 29, 2007): Stable release for R 2.4.0-2.5.0. Fixed bugs in help.zelig(), and summary
for multinomial logit, bivariate probit, and bivariate logit with multiple imputation. (Thanks to Brant
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Inman and Javier Marquez.) First version dependencies are as follows:
MASS 7.2-34
boot 1.2-27
VGAM 0.7-1
MCMCpack 0.8-2
mvtnorm 0.7-5
survival 2.31
sandwich 2.0-0
zoo 1.2-1
coda 0.10-7
nnet 7.2-34
sna 1.4

• 2.8-2 (March 3, 2007): Stable release for R 2.4.0-2.4.1. Fixed bug in ARIMA simulation process.

• 2.8-1 (February 21, 2007): Stable release for R 2.4.0-2.4.1. Made setx() compatible with ordred factor
variables (thanks to Mike Ward and Kirill Kalinin). First order dependencies as in version 2.8-1.

• 2.8-0 (February 12, 2007): Stable release for R 2.4.0-2.4.1. Released ARIMA models and network
analysis models (least squares and logit) for sociomatrices. First level dependencies are as follows:

MASS 7.2-31
boot 1.2-27
VGAM 0.7-1
MCMCpack 0.7-4
mvtnorm 0.7-5
survival 2.31
sandwich 2.0-0
zoo 1.2-1
coda 0.10-7
nnet 7.2-31
sna 1.4

• 2.7-5 (December 25, 2006): Stable release for R 2.4.0-2.4.1. Fixed bug related to names.default(),
summary for multiple imputation methods, and prediction for ordinal response models (thanks to Brian
Ripley, Chris Lawrence, and Ian Yohai).

• 2.7-4 (November 10, 2006): Stable release for R 2.4.0. Fixed bugs related to R check.

• 2.7-3 (November 9, 2006): Stable release for R 2.4.0. Fixed bugs related to R check.

• 2.7-2 (November 5, 2006): Stable release for R 2.4.0. Temporarily removed arima models.

• 2.7-1 (November 3, 2006): Stable release for R 2.4.0. Made changes regarding the S4 classes in VGAM.
The arima (arima) model for time series data added by Justin Grimmer. First level dependencies are
as follows:

MASS 7.2-29
boot 1.2-26
VGAM 0.7-1
MCMCpack 0.7-4
mvtnorm 0.7-5
survival 2.29
sandwich 2.0-0
zoo 1.2-1
coda 0.10-7

310



• 2.6-5 (September 14, 2006): Stable release for R 2.3.0-2.3.1. Fixed bugs in bivariate logit, bivariate
probit, multinomial logit, and model.matrix.multiple (related to changes in version 2.6-4, but not
previous versions, thanks to Chris Lawrence). First level dependencies are as follows:

MASS 7.2-27.1
boot 1.2-26
VGAM 0.6-9
MCMCpack 0.7-1
mvtnorm 0.7-2
survival 2.28
sandwich 1.1-1
zoo 1.0-6
coda 0.10-5

• 2.6-4 (September 8, 2006): Stable release for R 2.3.0-2.3.1. Fixed bugs in setx(), and bugs related
to multiple and the multinomial logit model. Added instructions for installing Fortran tools for
Intel macs. Added the R×C ecological inference model. (thanks to Kurt Hornik, Luke Keele, Joerg
Mueller-Scheessel, and B. Dan Wood)

• 2.6-3 (June 19, 2006): Stable release for R 2.0.0-2.3.1. Fixed bug in vdc interface functions, and
parse.formula(). (thanks to Micah Altman, Christopher N. Lawrence, and Eric Kostello)

• 2.6-2 (June 7, 2006): Stable release for R 2.0.0-2.3.1. Removed R × C ei. Changed data = list()

to data = mi() for multiply-imputed data frames. First level version compatibilities are as for version
2.6-1.

• 2.6-1 (April 29, 2006): Stable release for R 2.0.0-2.2.1. Fixed major bug in ordinal logit and ordinal
probit expected value simulation procedure (does not affect Bayesian ordinal probit). (reported by Ian
Yohai) Added the following ecological inference ei models: Bayesian hierarchical ei, Bayesian dynamic
ei, and R × C ei. First level version compatibilities (at time of release) are as follows:

MASS 7.2-24
boot 1.2-24
VGAM 0.6-8
MCMCpack 0.7-1
mvtnorm 0.7-2
survival 2.24
sandwich 1.1-1
zoo 1.0-6
coda 0.10-5

• 2.5-4 (March 16, 2006): Stable release for R 2.0.0-2.2.1. Fixed bug related to windows build. First-level
dependencies are the same as in version 2.5-1.

• 2.5-3 (March 9, 2006): Stable release for R 2.0.0-2.2.1. Fixed bugs related to VDC GUI. First level
dependencies are the same as in version 2.5-1.

• 2.5-2 (February 3, 2006): Stable release for R 2.0.0-2.2.1. Fixed bugs related to VDC GUI. First level
dependencies are the same as in version 2.5-1.

• 2.5-1 (January 31, 2006): Stable release for R 2.0.0-2.2.1. Added methods for multiple equation
models. Added tobit regression. Fixed bugs related to robust estimation and upgrade of sandwich and
zoo packages. Revised setx() to use environments. Added current.packages() to retrieve version
of packages upon which Zelig depends. First level version compatibilities (at time of release) are as
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follows:
MASS 7.2-24
boot 1.2-24
VGAM 0.6-7
mvtnorm 0.7-2
survival 2.20
sandwich 1.1-0
zoo 1.0-4
MCMCpack 0.6-6
coda 0.10-3

• 2.4-7 (December 10, 2005): Stable release for R 2.0.0-2.2.2. Fixed the environment of eval() called
within setx.default() (thanks to Micah Altman).

• 2.4-6 (October 27, 2005): Stable release for R 2.0.0-2.2.2. Fixed bug related to simulation for Bayesian
Normal regression.

• 2.4-5 (October 18, 2005): Stable release for R 2.0.0-2.2.0. Fixed installation instructions.

• 2.4-4 (September 29, 2005): Stable release for R 2.0.0-2.2.0. Fixed help.zelig() links.

• 2.4-3 (September 29, 2005): Stable release for R 2.0.0-2.2.0. Revised matchit() documentation.

• 2.4-2 (August 30, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in setx() related to as.factor()

and I(). Streamlined qi.survreg().

• 2.4-1 (August 15, 2005): Stable release for R 2.0.0-2.1.1. Added the following Bayesian models:
factor analysis, mixed factor analysis, ordinal factor analysis, unidimensional item response theory, k-
dimensional item response theory, logit, multinomial logit, normal, ordinal probit, Poisson, and tobit.
Also fixed minor bug in formula (long variable names coerced to list).

• 2.3-2 (August 5, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in simulation procedure for lognor-
mal model.

• 2.3-1 (August 4, 2005): Stable release for R 2.0.0-2.1.1. Fixed documentation errors related to model
parameterization and code bugs related to first differences and conditional prediction for exponential,
lognormal, and Weibull models. (reported by Alison Post)

• 2.2-4 (July 30, 2005): Stable release for R 2.0.0-2.1.1. Revised relogit, adding option for weighting in
addition to prior correction. (reported by Martin Plöderl)

• 2.2-3 (July 24, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug associated with robust standard
errors for negative binomial.

• 2.2-2 (July 13, 2005): Stable release for R 2.0.0-2.1.1. Fixed bug in setx(). (reported by Ying Lu)

• 2.2-1 (July 11, 2005): Stable release for R 2.0.0-2.1.0. Revised ordinal probit to use MASS library.
Added robust standard errors for the following regression models: exponential, gamma, logit, lognor-
mal, least squares, negative binomial, normal (Gaussian), poisson, probit, and weibull.

• 2.1-4 (May 22, 2005): Stable release for R 1.9.1-2.1.0. Revised help.zelig() to deal with CRAN build
of Windows version. Added recode of slots to lists in NAMESPACE. Revised install.R script to deal
with changes to install.packages(). (reported by Dan Powers and Ying Lu)

• 2.1-3 (May 9, 2005): Stable release for R 1.9.1-2.1.0. Revised param.lm() function to work with
bootstrap simulation. (reported by Jens Hainmueller)

• 2.1-2 (April 14, 2005): Stable release for R 1.9.1-2.1.0. Revised summary.zelig().
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• 2.1-1 (April 7, 2005): Stable release for R 1.9.1-2.1.0. Fixed bugs in NAMESPACE and sum-
mary.vglm().

• 2.0-14 (April 5, 2005): Stable release for R 1.9.1-2.0.1. Added summary.vglm() to ensure the com-
patibility with VGAM 0.6-2.

• 2.0-13 (March 11, 2005): Stable release for R 1.9.1-2.0.1. Fixed bugs in NAMESPACE and R-help file for
rocplot().

• 2.0-12 (February 20, 2005): Stable release for R 1.9.1-2.0.1. Added plot = TRUE option to rocplot().

• 2.0-11 (January 14, 2005): Stable release for R 1.9.1-2.0.1. Changed class name for subsettted models
from "multiple" to "strata", and modified affected functions.

• 2.0-10 (January 5, 2005): Stable release for R 1.9.1 and R 2.0.0. Fixed bug in ordinal logit simulation
procedure. (reported by Ian Yohai)

• 2.0-9 (October 21, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux and Windows). Fixed bug in
NAMESPACE file.

• 2.0-8 (October 18, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux only). Revised for submission
to CRAN.

• 2.0-7 (October 14, 2004): Stable release for R 1.9.1 and R 2.0.0 (Linux only). Fixed bugs in
summary.zelig(), NAMESPACE, and assorted bugs related to new R release. Revised syntax for
multiple equation models.

• 2.0-6 (October 4, 2004): Stable release for R 1.9.1. Fixed problem with NAMESPACE.

• 2.0-5 (September 25, 2004): Stable release for R 1.9.1. Changed installation procedure to source
install.R from Zelig website.

• 2.0-4 (September 22, 2004): Stable release for R 1.9.1. Fixed typo in installation directions, imple-
mented NAMESPACE, rationalized summary.zelig(), and tweaked documentation for least squares.

• 2.0-3 (September 1, 2004): Stable release for R 1.9.1. Fixed bug in conditional prediction for survival
models.

• 2.0-2 (August 25, 2004): Stable release for R 1.9.1. Removed predicted values from ls.

• 2.0-1b (July 16, 2004): Stable release for R 1.9.1. MD5 checksum problem fixed. Revised plot.zelig()

command to be a generic function with methods assigned by the model. Revised entire architecture to
accept multiply imputed data sets with strata. Added functions to simplify adding models. Completely
restructured reference manual. Fixed bugs related to conditional prediction in setx and summarizing
strata in summary.zelig.

• 1.1-2 (June 24, 2004): Stable release for R 1.9.1 (MD5 checksum problem not fixed, but does not seem
to cause problems). Fixed bug in help.zelig(). (reported by Michael L. Levitan)

• 1.1-1 (June 14, 2004): Stable release for R 1.9.0. Revised zelig() procedure to use zelig2model()

wrappers, revised help.zelig() to use a data file with extension .url.tab, and revised setx()

procedure to take a list of fn to apply to variables, and such that fn = NULL returns the entire
model.matrix().

• 1.0-8 (May 27, 2004): Stable release for R 1.9.0. Fixed bug in simulation procedure for survival models.
(reported by Elizabeth Stuart)

• 1.0-7 (May 26, 2004): Stable release for R 1.9.0. Fixed bug in relogit simulation procedure. (reported
by Tom Vanwellingham)
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• 1.0-6 (May 11, 2004): Stable release for R 1.9.0. Fixed bug in setx.default, which had previously failed
to ignore extraneous variables in data frame. (reported by Steve Purpura)

• 1.0-5 (May 7, 2004): Replaced relogit procedure with memory-efficient version. (reported by Tom
Vanwellingham)

• 1.0-4 (April 19, 2004): Stable release for R 1.9.0. Added vcov.lm method; changed print for sum-
mary.relogit.

• 1.0-2 (April 16, 2004): Testing distribution for R 1.9.0.

• 1.0-1 (March, 23, 2004): Stable release for R 1.8.1.

50.2 What’s Next?

We have several plans for expanding and improving Zelig. Major changes slated for Version 3.0 (and beyond)
include:

• Hierarchical and multi-level models

• Ecological inference models

• GEE models

• Neural network models

• Average treatment effects for everyone (treated and control units)

• Time-series cross-sectional models (via nlme)

• Generalized boosted regression model (via gbm)

• Saving random seeds to ensure exact replication

If you have suggestions, or packages that you would like to contribute to Zelig, please email our listserv
at zelig@lists.gking.harvard.edu.
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